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Phase-Relaxed-Passive Full State Feedback
Gain Limits for Series Elastic Actuators
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Abstract—Full State Feedback (FSF) controllers for Series
Elastic Actuators (SEAs) bridge the gap between impedance and
admittance controllers. For humanoid robots—which must sta-
bly accomplish both stiff and soft behaviors—FSF controllers
are ideal candidate joint controllers. However, previous work on
FSF gain tuning has used a nonlinear passivity analysis which
does not account for time delay and can result in unstable behav-
ior. In this work we introduce a phase-based frequency domain
approach to limiting these gains. This strategy can guarantee
phase-relaxed passivity according to a relaxation parameter—an
a priori bound on the regenerative efficiency of springs appear-
ing in the environment. A simple demonstration illustrates how
relaxed phase passivity behaves differently than strict passivity
in how it handles the load inertia, allowing stiffness beyond the
passive limit.

I. INTRODUCTION

Series Elastic Actuators (SEAs) [1], actuators which are
deliberately designed to result in a flexible joint robot [2],
have gained widespread adoption for their ability to protect
drive-trains from shock loads, allow stable force control, and
generate compliant behavior for human–robot interaction. Hu-
manoid robots, in particular, have employed series elastic actu-
ators and have attempted to use them for both impact absorp-
tion in the legs, and safely compliant behavior around people.

Typical cascaded SEA control designs [3], [4], [5] are in-
tended to verify stability and passivity for one system with one
impedance behavior. However, humanoids and other robots
which have reason to switch between extreme impedance
behaviors suffer from being locked into a cascaded con-
trol structure that prohibits the other extreme behavior [6],
[7]. Non-cascaded Full State Feedback (FSF) controllers
avoid these structural restrictions, can be shown to general-
ize some cascaded controllers [8], [9], [10], and fit within
LMI design frameworks [11], but pay the cost of greater
complexity—making it less obvious how to change the set-
point or impedance.

Originally suggested in [2], a full state feedback control
that could place the poles of the feedback linearization of a
flexible joint robot (that is, an SEA) was presented in [8].
With an energy-based lyapunov function it was also proven
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Fig. 1. The experimental testbench, assembled at NASA JSC, comprising: a)
an actuator base link (brushless DC motor, harmonic drive transmission, and
rotary spring obscured); b) an actuator output link which rotates relative to
the base link; c) a spring deflection sensor; d) a calibrated torque sensor; and
e) adjustable output inertia (these two weights are tightly lashed to the output
lever using high-strength Vectran cable).

to be passive for a restricted set of gains. In an FSF structure
for SEAs, such gain-limiting conditions are critical for ensur-
ing robust coupled stability with the unknown environment.
Without these limits we must rely on manual tuning, which
restricts the potential to automatically adjust impedance be-
havior according to a higher level control task. However, the
published theoretical limits suffer the drawbacks of being A)
merely sufficient conditions and B) only lower bounds with no
limit preventing infinite gains [12], [4]. Additional empirical
limits (with upper bounds) are recommended in practice [4].
These theoretical results are based on a nominal model which
neglects many realistic gain limiting effects, such as time de-
lay, derivative filtering [13], [14], or more generic model un-
certainty [15], [16], [17].

To address this gap, we look at the FSF gain limit problem
from the perspective of frequency domain design instead of
from the traditional nonlinear control perspective. This allows
us to model time delay and derivative filtering as we solve the
linear systems sub-problem that forms the core of FSF gain
limits. Though we do not explicitly treat it here, this problem
shows up indirectly even in the multi-joint case [18], [19].
We contribute 1) necessary and sufficient gain conditions for
nominal system passivity, 2) gain upper bounds derived from
stability and minimum phase aspect of passivity with time de-
lay and derivative filtering 3) a phase-relaxation of passivity
that is related to the regenerative efficiency of springs, 4) suf-
ficient conditions for nominal relaxed passivity, 5) a hardware
example (see Fig. 1) of a stiffer-than-passive behavior.
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Fig. 2. Nominal model with three design model additions (shown with
switches A, B, and C in the off state). If all three are engaged, we have the
full design model. With only switch A in the on state, we have the time delay
only model. F (s) represents a low pass filter acting exclusively on the two
state-derivative inputs to the full state feedback controller. Note that, while
the actuator port input is position and output is torque (making the actuator
a stiffness), we analyze the system as if the input were torque and the output
were position (an integral admittance), like the joint port.

II. MODELING

Our strategy uses two models, shown in Fig. 2. The nomi-
nal model is a simplified model that allows for analytical pole
and zero placement in the design process. The design model is
more complete but less tractable, and is used to justify band-
width limits on the pole/zero placement process from the nom-
inal model. In both models, there are two non-disturbance in-
puts (motor torque τm and joint torque τj) and two (linearly
independent) outputs (θm and θs). These outputs can construct
a third output θj which is part of the joint port. Drivetrain fric-
tion is included in the design model as a bounded disturbance
torque, but does not have an impact on stability. The joint in-
ertia Jj is only the modeled part of the inertia, and is not
meant to represent perfect knowledge of the environment’s in-
ertia. For convenience, the angles, torques, and dynamics are
all reflected through the applicable gear ratios into the refer-
ence frame of the output.
A. Nominal Model

The frequency domain signals1 are related as follows in the
nominal model:

θj = θm + θs, τj = Jjs
2θj + τs,

τs = Ksθs, (Jms
2 +Bms)θm = τs + τm. (1)

Defining a full state feedback controller for this nominal
model system, we have four states and four parameters (as in
other full state feedback controllers [8], [9], [10], [4])

τm = −(K1 +B1s)θm + (K2 +B2s)θs, (2)
with controller gain variables K1, B1, K2, and B2. The closed
loop integral admittance at the actuator port (Fig. 2),
θj
τs

=
Jms

2 + (Bm +B1 +B2)s+ (Ks +K1 +K2)

(Jms2 + (Bm +B1)s+K1)Ks
, (3)

is second order, with the two poles and two zeros all indepen-
dently assignable using the four gains. The asymptotic high
frequency behavior is the physical spring compliance, and the
asymptotic low frequency behavior is Ks+K1+K2

K1Ks
, a feedback

1With notation neglecting functional dependence on the Laplace variable s.

gain dependent compliance. The (classical) admittance is sim-
ply (3) times s, a non-causal transfer function.
B. Design Model

The design model (Fig. 2) amends the nominal model with
the inclusion of three optional confounding factors: A) a time
delay on the input τm, B) a bounded transmission friction dis-
turbance |τf | ≤ τ̄f , and C) low pass filtering on the derivative
signal inputs to the full state feedback controller. This filter-
ing is realistic for the case where no direct velocity sensor is
available, and velocity is inferred from a position sensor using
a causal filter to approximate differentiation. We parameterize
the inclusion of each effect using three Booleans, bA, bB , and
bC respectively. This alters the above equations,

(Jms
2 +Bms)θm = τs + e−bATsτm + bBτf , (4)

F (s) =
ωf

bCs+ ωf
, (5)

τm = −(K1 +B1F (s)s)θm + (K2 +B2F (s)s)θs. (6)
Clearly if all three Booleans are zero, the equations are un-
changed from before.
C. Setpoints

Unlike in cascaded systems, changing the setpoint in a full
state feedback system is non-trivial [20], [21]. Though it is not
part of our experiment, we can invert the closed loop nominal
model to find a feed forward motor torque term which will
accomplish any 4th order continuous desired joint position
trajectory θdj (t) in the presence of a second order continuous
external joint torque trajectory τdj (t):
τm = −(K1 +B1s)θm + (K2 +B2s)θs +

(
K−1s JmJjs

4

+K−1s (Bm +B1 +B2)Jjs
3 +K1

s (Ks +K1 +K2)Jjs
2

+Jms
2 + (Bm +B1)s+K1

)
θdj +K−1s

(
Jms

2

+(Bm +B1 +B2)s+ (K1 +K2 +Ks)
)
τdj . (7)

Since the polynomials used are conveniently also the numera-
tor and denominator of the nominal joint integral admittance,
any gain conditions that result in nominal joint passivity will
naturally also prohibit RHP roots in these feed-forward com-
pensator terms.
D. Transmission Friction

While we do not model any strategies to reduce transmis-
sion friction, several exist in the literature already. Ref. [8]
suggests a direct friction-model-based compensator. The mo-
tor as influenced by the desired current and the spring torque is
also a closed system, and any deviation from expected behav-
ior can be canceled by an appropriate friction observer [22],
[23], [24], [25]. We include the design model term τf in order
to draw attention to the following behavior:
Remark 1. In the design model with bA = 0, bB = 1, bC =
0, the sensitivity of torque tracking error (deviation from the
nominal model value) to friction torque is
eτ
τf

=
−Ks

Jms2 + (Bm +B1 +B2)s+ (Ks +K1 +K2)
, (8)

and therefore is ameliorated if K2 +K1 > 0, and amplified if
−Ks ≤ K2 +K1 < 0.
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III. PHASE-BASED GAIN LIMITS

A. Nominal Passivity Limits
The passivity limits of the nominal model can be used to

reproduce the simple gain limits from [4]—that
K1, B1,K2, B2 > 0, (9)

—since these are are also based on nominal model analysis.
In fact, freed from the burden of producing an energy function
expression, we can derive necessary and sufficient conditions.

Theorem 1. The nominal system is passive at the actuator
port if and only if

K1 ≥ 0, K2 ≥ −Ks +
B2K1

Bm +B1
, B1 ≥ −Bm, B2 ≥ 0.

(10)

Proof. The closed loop actuator port integral admittance de-
fined in (3) is passive iff it has LHP poles and zeros and has
phase in the range [−180◦, 0◦] for all frequencies. LHP poles
and zeros occur iff all the coefficients of these second order
polynomials are positive (by trivial Routh tests). Thus

Bm +B1 ≥ 0, K1 ≥ 0, (11)
Bm +B1 +B2 ≥ 0, Ks +K1 +K2 ≥ 0, (12)

where (11) directly gives two of the conditions.
The other two follow from the phase condition.
∠[Jms

2+(Bm+B1+B2)s+Ks+K1+K2

Jms2+(Bm+B1)s+K1
] = ∠[Jms

2 +(Bm+B1 +

B2)s + Ks + K1 + K2] − ∠[Jms
2 + (Bm + B1)s + K1] ≤

0 ∀s = jω, ω ≥ 0 ⇐⇒ π/2 − tan−1( K1−Jmω2

(Bm+B1)ω
) ≥

π/2 − tan−1(Ks+K1+K2−Jms2
(Bm+B1+B2)s

) ∀ ω ≥ 0. This last equiv-
alence uses both Bm + B1 ≥ 0 and Bm + B1 + B2 ≥ 0.
Since inverse tangent is monotonically increasing, this is
equivalent to − K1−Jmω2

(Bm+B1)ω
≥ −Ks+K1+K2−Jms2

(Bm+B1+B2)s
∀ ω ≥ 0.

This equality holding for all omega is equivalent to it hold-
ing for any omega (we will use the limit as ω → ∞)
and the difference Ks+K1+K2−Jmω2

(Bm+B1+B2)ω
− K1−Jmω2

(Bm+B1)ω
having

no real roots in ω. The limit condition can be expressed
in ε = 1/ω → 0 as Jm−K1ε

2

(Bm+B1)ε
≥ Jm−(Ks+K1+K2)ε

2

(Bm+B1+B2)ε

which, neglecting terms of the order ε2 is equivalent to
Jm(Bm + B1 + B2) ≥ Jm(Bm + B1) ⇐⇒ B2 ≥ 0,
the fourth condition in (10). As for the lack of roots, we
can rewrite the expression (excluding three special cases:
B2 = 0, Bm + B1 = 0, and Bm + B1 + B2 = 0) as
(Bm + B1)(Ks + K2) − B2K1 + ω2JmB2, and therefore
K2 ≥ −Ks + B2K1

Bm+B1
, the final condition. Returning to

the special cases: 1) if B2 = 0, then the test reduces to
Ks+K2

(Bm+B1)ω
≥ 0 ∀ ω ≥ 0 and thus K2 ≥ −Ks, a special

case of this final condition; 2) if Bm + B1 = 0, then re-
turning to the arctangent comparison, and considering in
particular the limit as ω →

√
K1/Jm from below such that

tan−1(K1−Jmω2

0·ω ) = π/2 ≤ tan−1(Ks+K1+K2−Jmω2

B2ω
), we

see that B2 = 0, K2 ≥ Ks as before; 3) Bm +B1 +B2 = 0
forces B1 +Bm = B2 = 0 which implies case 2.

These conditions are implied by the sufficient conditions in
(9), as expected. They are not convex, and thus do not suggest
that gains could be optimized in a tractable convex optimiza-
tion framework, but they are analytical and therefore easy to
check. These bounds are still insufficient to guarantee safety in
practice however, because the nominal model omits any fac-

tors that would upper bound the gains, and upper bounds are
critical for practical stability [4].
B. Passive Phase Limits with Delay

As the following theorem illustrates, passivity is almost in-
compatible with the design model.

Theorem 2. With the design model such that bA = 1, bB =
0, bC = 0 it is necessary for actuator port closed loop pas-
sivity that

B2 = 0, K2 = 0, and |B1| ≤ Bm. (13)

Proof. For the phase of the actuator port integral impedance
C(jω) = N(jω)/D(jω) to be passive, the imaginary part
must be negative. Its numerator times the complex conjugate
of its denominator must have a negative imaginary part as
well. Writing out the expression for =[N(jω)D(jω)], we find
a third order polynomial in ω with coefficients containing trig
functions due to the time delay, we see that the ω3 term,

ω3(JmB2 cos(−Tω)), (14)
will both grow to dominate all others at high frequencies and
change sign. Therefore for the system to be passive, B2 = 0.
Under this condition, the behavior of the ω2 term is now the
dominant term at high frequencies:

ω2(JmK2 sin(−Tω)), (15)
which similarly necessitates K2 = 0. The final condition
comes from the ω term under these conditions:

ω(Ks(Bm +B1 cos(−Tω))), (16)
which necessitates the final condition.

This suggests that passivity tests with realistic design mod-
els have limited meaningfulness. Nominal model passivity
tests mean that realistic design models are likely not them-
selves passive, but only close—in the sense of model approx-
imation error—to the nominal system which is.

Formally relaxing the phase condition on passivity allows
some behavior with clear robotics application that is not per-
missible in a nominal passivity framework, as we will demon-
strate in the section after next.
C. Stability and Minimum Phase

However, these design model additions are well equipped
to limit the gains based on the stability and minimum phase
requirements of the actuator and even joint integral admittance.
By constructing an appropriate test system, a phase margin can
confirm that a polynomial or time-delay quasi-polynomial has
no roots in the RHP.
Proposition 2. The actuator port integral admittance is stable
and minimum phase for the design model with bA = 1, bB =
0, bC = 1 if the two test systems
e−sT (B1F (s)s+K1)

Jms2 +Bms
, and

e−sT ((B1 +B2)F (s) + (K1 +K2))

Jms2 +Bms+Ks
,

(17)
are stable under unit negative feedback.

Proof. These test systems are designed to have closed loop
denominators equal to the numerator and denominator, respec-
tively, of the actuator port integral admittance (similar to (3),
but for the design model).

There are various ways of relating this condition to the gains
which are involved but not novel (e.g. the Bode plot phase
margin test). This is how we upper bound the gains.
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Fig. 3. Bode plot of a FSF tuning beyond the passive stiffness limit with the
design model (bA = 1, bB = 0, bC = 1), showing the closed loop design
model actuator port integral admittance ( ) and joint port integral ad-
mittance ( ). For comparison, the integral admittance of the physical
spring is shown ( ). The nominal model’s poles and zeros of actuator
port integral admittance are marked in black (poles as X, zeros as O).

IV. RELAXING PASSIVITY USING PHASE

Definition 1 (Regenerative Efficiency). Consider a passive lin-
ear system with derivative impedance (reciprocal of integral
admittance) S(jω) engaged in steady state sinusoidal behav-
ior at angular frequency Ω, with position θ(t) = a0 cos(Ωt)
and torque τ(jω) = S(jω)θ(jω). We name the energy
Er = −

∫ π
2Ω

0
θ̇(t)τ(t)dt the recovered energy harvested as the

system moves from a0 to rest. Similarly, Ei =
∫ π

Ω
π
2Ω
θ̇(t)τ(t)dt

is the input energy required to displace the system from rest
to −a0. If the system is an ideal spring, these energies are
the same. We define the energy ratio η(S,Ω) = Er

|Ei| , as the
spring-mode regenerative efficiency at this frequency.

Proposition 3 (ψ-Restricted-Phase Passive Systems). The
spring-mode regenerative efficiency η(S,Ω) for a passive lin-
ear system that has a derivative impedance S(jω) = Sr(ω)+
jSi(ω) with ∠S(jω) ∈ (ψ, π) ∀ω for the phase restriction
parameter ψ, 0 ≤ ψ ≤ π/2, which we term a ψ-restricted-
phase passive system, is bounded:

η(S,Ω) =
2Sr(Ω)− πSi(Ω)

|2Sr(Ω) + πSi(Ω)|
<

2 cos(ψ)− π sin(ψ)

|2 cos(ψ) + π sin(ψ)|
∀ Ω. (18)

Proof. Equality follows from substituting τ(t) =
Sr(Ω)a0 cos(Ωt) − Si(Ω)a0 sin(Ωt) and directly com-
puting the efficiency η(S,Ω). Inequality bound results from a
monotonic relationship within the specified angle range.

Proposition 4 (ψ-Relaxed-Phase Passivity). We call a sys-
tem whose integral admittance is stable, minimum phase, and
has phase within the range [−π − ψ, 0] a ψ-relaxed-phase
passive system. The feedback interconnection of a ψ-relaxed-
phase passive system and a ψ-restricted-phase passive system
is stable for all 0 ≤ ψ ≤ π/2.

Proof. By the Nyquist criterion: the phase of the (stable) open
loop system is restricted to (−π, π), thereby preventing its
Nyquist plot from reaching or encircling the -1 point.

V. NOMINAL RELAXED PASSIVITY AT THE JOINT PORT

The ψ-phase-relaxed passivity of the nominal model’s joint
port can now be used to derive more permissive gain limits.
Theorem 3. If the gains satisfy (11), (12), and there exists a
“certificate angular frequency” ωc such that

B2 ≥ −
(Bm +B1)(Ks +K2)

Jmω2
c −K1

, K2 ≥ −Ks +
B2K1

Bm +B1
,
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Fig. 4. Comparison of measured and expected stiffness behavior. An off-
center weight is placed on the device and then removed to generate a pulse-
like torque profile. Measured deflection θj is amplified by the expected low
frequency stiffness to show that it matches the measured load torque τj . This
torque follows a spring behavior 2.4 (i.e. K1

K1+K2+Ks
) times stiffer than the

series spring, indicating a stiffness beyond the passive limit. From the large
scale graph a), region b) is expanded for clarity in sub-figure c).

K2
1ω
−4
c − 2

JmK1

ω2
c

+ J2
m +

(B1 +Bm)2

ω2
c

≤ +Jj [((K1 +K2

+Ks)− Jmω2
c )2 + (B1 +B2 +Bm)2ω2

c ](tan−1(ψ))2, (19)
then the nominal system is ψ-relaxed-phase passive at the joint
port.

Proof. The first two conditions are sufficient to guarantee that
the phase of the actuator port integral admittance is in the pas-
sive range ∀ω : 0 ≤ ω ≤ ωc, and therefore so is the phase of
the joint port integral admittance. The final condition claims
that the actuator port integral admittance magnitude is at least
1/ tan−1(ψ) times the magnitude of the integral admittance
of the joint inertia alone. Since the LHS terms are positive
and decreasing with ωc and RHS terms are positive and in-
creasing with ωc, the inequality holds for all ω > ωc. With
this magnitude relationship, we can guarantee the difference
between the joint port integral admittance phase and the phase
of the joint inertia integral admittance is less than ψ and there-
fore satisfies the relaxed phase passivity criteria. Inequalities
(11) and (12) guarantee that the nominal actuator admittance
is stable and minimum phase. The joint port admittance has
the same numerator, and the roots of its denominator are guar-
anteed to be LHP because ωc is also higher frequency than the
crossover frequency of the product system of actuator port in-
tegral admittance and Jjs2 under unit negative feedback, and
the phase condition guarantees that this feedback results in a
non-negative phase margin.

Note that these conditions only ensure ψ-relaxed-phase pas-
sivity at the nominal model’s joint port. An analytical expres-
sion for ψ-relaxed-phase passivity of the design model’s joint
port is beyond the scope of this paper. However, if (11) and
(12) hold, the relaxed phase condition can be graphically ver-
ified after the fact using the Bode plot of the design model’s
joint port’s integral admittance (see Fig. 3).

VI. EXPERIMENTS

Using a NASA Valkyrie actuator (Fig. 1, [26]) we demon-
strate the behavior of the controller from Fig. 3.
A. System Identification

We identify the parameters of our linear model (Tab. I) using
closed loop tests driven by the joint output (and not by the
motor, as is more typical). This testing scheme makes use of
the assumed model structure for a series elastic actuator.



PRE-PRINT MANUSCRIPT 5

10−3

10−4

10−5

0◦

−90◦

−180◦

−270◦

−360◦

102101100 Frequency (Hz)

M
ag

ni
tu

de
Ph

as
e

102101100

10−3

10−4

10−5

0◦

−90◦

−180◦

−270◦

−360◦

Frequency (Hz)

M
ag

ni
tu

de
Ph

as
e

a) b)

spring
actuator
joint

spring
actuator
joint

c)

d)

Fig. 5. Demonstration of FSF tuning beyond the passive stiffness limit. Bode plots show integral admittance transfer functions (position over force) for the
passive spring ( ), the actuator port ( , and data dots of the same color), and the joint port ( , and dots of the same color)—which is
inferred from the actuator behavior and the joint inertia. Subplot a) shows the raw frequency domain measurements (dots) from 20 experiments using the
same controller. Subplot b) shows the same data with a compensatory term that eliminates friction and other errors in the motor model (i.e. corrected motor
position is found as a transfer function of the difference between motor torque and spring torque). Joint and actuator port integral admittance show a clear
reduction (c) relative to spring compliance at low frequencies—indicating the stiffness is beyond the passive limit. Joint port integral admittance does not
violate the phase-relaxed passivity criteria (d).

The first test has no feedback controller. From the empirical
integral admittance of the motor, θ̂m/τ̂s, we find a linear es-
timate for the reflected motor damping, Bm. The second test
finds the negative motor velocity feedback which corresponds
to the boundary of stability using bisection search. Assuming
the motor velocity feedback has canceled the motor damping,
we estimate the motor torque constant. Using this controller,
we measure a new estimate of the closed loop motor integral
admittance. From this we find an estimate of the reflected mo-
tor inertia, Jm. Third, we design a stiff motor position con-
troller. Exerting force on the output again, we measure an em-
pirical estimate of the spring stiffness by comparing the spring
deflection with the output torque sensor. Fourth and finally, we
attach the joint inertia load and drive the system from the ac-
tuator side instead of the load side. (To do this, we attach a
lever arm fixture to the motor housing, and excite manually
as in the other tests.) The torque on the load from the actu-
ator is equal and opposite to the torque on the actuator from
the load, so we use the negative of the load cell measurement.
The empirical joint integral admittance thus reveals Jj , and
our identification is complete.
B. Frequency Domain Results

As shown in Fig. 5, the controller of Tab. I achieves a lower
joint integral admittance than the compliance of the series
spring. The bode plot also reveals that the controller results in
a non-passive actuator integral admittance. The experimental
bode plots are truncated to 100 Hz due to the low signal to
noise ratio above this frequency. Each one overlays 20 tests
to show the variation in the results.

The two bode plots in Fig. 5 differ in that Fig. 5.b cor-
rects (post-hoc) for τf using an offline disturbance estimator.
Fig. 5.b which is far closer to our expectation, which suggests
that the drivetrain friction is the reason that our engineered
damping ratio does not appear in the raw bode plot Fig. 5.a.
C. Time Domain Results

Time domain results can only show interaction with a single
environment, and are therefore only able to falsify passivity or
relaxed passivity claims, but they are relatively easy to inter-
pret. Fig. 4 shows how similar the resulting actuator stiffness
is to an ideal spring 2.4 times higher than the series elastic
spring. It also demonstrates some high frequency error in the

TABLE I
PARAMETERS OF THE ACTUATOR AND CONTROLLER

Parameter Value

Jm 0.44 Kg m2

Bm 17.9 Nm s/rad
Ks 1 180 Nm/rad
Jj 0.29 Kg m2

Gain Value

K1 69,480 Nm/rad
B1 1,387 Nm s/rad
K2 -41,690 Nm/rad
B2 -1,183 Nm s/rad

result which could be counted as the main drawback of such
an aggressive control technique. It seems that there is even
some periodicity to the error. A small amplitude oscillation is
noticeable at roughly 15 Hz, corresponding with the large res-
onant peak seen in the joint integral admittance of Fig. 5.a.
This frequency matches the resonant frequency of the added
inertia and the ideal stiffness the actuator is simulating. The
persistence of the oscillations means the system is sustaining
them energetically (contrary to the claims of the analysis), but
the fact that the oscillations at the transition die out indicates
that the oscillation magnitude is stable. Thus these oscillations
are probably due to an unmodeled nonlinearity (e.g. the mo-
tor damping properties changing at small amplitudes due to
Coulomb friction) that compromises the passivity guarantee
for small amplitude, but not large amplitude, deviations from
the equilibrium. This non-passivity at low amplitudes allows
the system to keep this resonance going by injecting energy
at the joint port.

VII. CONCLUSION

This paper applies frequency domain thinking to the prob-
lem of gain limits in full state feedback SEA control, deriving
necessary and sufficient passivity conditions for the nominal
model, a demonstration that the design model almost prohibits
strict passivity, and finds sufficient conditions for relaxed pas-
sivity in the nominal model.
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[22] L. Le-Tien, A. Albu-Schäffer, A. De Luca, and G. Hirzinger, “Friction
observer and compensation for control of robots with joint torque mea-
surement,” in Proc. 2008 IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, pp. 3789–3795.

[23] T. Kawakami, K. Ayusawa, H. Kaminaga, and Y. Nakamura, “High-
fidelity joint drive system by torque feedback control using high preci-
sion linear encoder,” in Proc. 2010 IEEE Int. Conf. Robotics and Au-
tomation, pp. 3904–3909.

[24] M. J. Kim and W. K. Chung, “Disturbance-observer-based pd control of
flexible joint robots for asymptotic convergence,” IEEE Trans. Robotics,
vol. 31, no. 6, pp. 1508–1516, 2015.

[25] M. J. Kim, F. Beck, C. Ott, and A. Albu-Schäffer, “Model-free fric-
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