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Abstract— Many exoskeletons today are primarily tested in
controlled, steady-state laboratory conditions that are unrealistic
representations of their real-world usage in which walking condi-
tions (e.g., speed, slope, and stride length) change constantly. One
potential solution is to detect these changing walking conditions
online using Bayesian state estimation to deliver assistance that
continuously adapts to the wearer’s gait. This paper investigates
such an approach in silico, aiming to understand 1) which of
the various Bayesian filter assumptions best match the problem,
and 2) which gait parameters can be feasibly estimated with
different combinations of sensors available to different exoskele-
ton configurations (pelvis, thigh, shank, and/or foot). Our results
suggest that the assumptions of the Extended Kalman Filter are
well suited to accurately estimate phase, stride frequency, stride
length, and ramp inclination with a wide variety of sparse sensor
configurations.

I. INTRODUCTION

Lower-limb wearable robots, such as exoskeletons and
prostheses, have the potential to transform the mobility of
the public. Already, powered exoskeletons have been able
to improve the physiological performance of users during
locomotion, including reducing the metabolic cost [1]-[5]
and muscular effort [6]-[8] below the levels of unassisted
walking, while powered prostheses have allowed amputees to
regain locomotion ability [9]-[14]. However, these technolo-
gies have been largely limited to the controlled conditions
of a laboratory. To truly impact society, these technologies
must function with the unsteady, transitory gaits that arise
in the real world, such as walking at variable speeds and
inclines. Measuring these task variables, along with the user’s
progression through a gait cycle, is difficult to do directly.
Recent work has demonstrated success in estimating dynam-
ically changing gaits using implementations of the Bayesian
filtering framework [15]-[18]. Thus, a systemic investigation
into the fundamental problem of gait state estimation using
the Bayesian framework can guide wearable robot controller
design and may lead to better estimation of real-world walking
conditions.

Gait variation can be represented in multiple ways. The
concept of gait phase quantifies progression through the gait
cycle. A phase variable ranges from O at heel strike to 1 at
the next ipsilateral heel strike [19]. Its time derivative, phase
rate, is not necessarily constant. Recent work in phase-based
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controllers for powered prostheses and orthoses relies on esti-
mates of phase (and sometimes phase rate) [20]-[28] to handle
gait speed variation. To encode other types of task variation,
machine learning-based solutions often classify the locomotion
task from signal patterns from onboard sensors [10], [24],
[28]-[35]. However, such controllers are typically only able to
classify tasks within a pre-specified set of categories. Walking
tasks have been parameterized by continuous task variables
such as ground slope or walking speed [36]-[38], but these
task variables have only been estimated once per stride in
laboratory conditions. New methods for real-time, continuous
task estimation are needed to enable seamless adaptation to
real-world conditions.

Bayesian filtering allows using noisy measurements to
estimate hidden states like gait phase and continuous task
variables; this framework is well-suited to discriminate the
differences in gait biomechanics between strides to notice
changes in the underlying task. For linear systems with
Gaussian noise, Bayesian filters are implementable as the
classic Kalman filter. However, for nonlinear problems, sim-
plifying assumptions are inevitable [39] with differing levels
of assumption strength. The Ensemble Kalman Filter (EnKF)
has the weak assumption of a Gaussian state distribution,
and uses Monte Carlo methods to calculate the measurement
update [40]. The Unscented Kalman Filter (UKF) assumes
more, and uses quadrature integration and judiciously chosen
points and weights to approximate the nonlinear measurement
update [41]. The Extended Kalman Filter (EKF) assumes the
most, and trusts a local linearization to perform the nonlinear
measurement update.

Recently, Bayesian filtering has been applied to human gait
estimation in wearable robotics. Thatte et al. [15] introduced
a simple two-state EKF as a robust solution to estimating
progression through the stance period using the hip, knee,
and ankle angles and velocities from a knee-ankle prosthesis.
Stance progress was also estimated using the heel pressure
and shank angle of an ankle prosthesis [17]. However, the
swing period was handled separately in these two approaches.
Researchers were also able to estimate stride length using a
twice per step filter update using hip and knee velocities from
an exoskeleton [16], but this estimate was not continuously
updated. Our own recent work introduced a 4-state EKF
to simultaneously estimate stride progress (both stance and
swing), stride length, and ground inclination using foot and
shank angles/velocities and filtered heel acceleration for an
ankle exoskeleton [18]. This simultaneous estimation approach
begs the question of which measurements inform which states,
which sensors are necessary for successful estimation, and to
what extent the other Bayesian filters in the literature reflect



the non-linearity of gait-state estimation.

In this paper, we A) systematically evaluate different im-
plementations of the Bayesian filter to determine which sim-
plifying assumptions (i.e., those of the EnKF, UKF, or EKF)
were best suited to the challenge of gait-state estimation; B)
investigate which angular kinematic measurements of the leg
segments provide the most information about the underlying
gait state, which can inform a minimal realization of sensors
on hardware that balances estimation quality with sensor
complexity; and C) determine the relationship between sensor
configurations and estimation of simplified models of the gait
state without ground inclination, stride length, or both. We
intend for these results to inform the design of future wearable
systems that estimate human gait.

II. METHODS
A. Process Model

Bayesian estimation employs a forward model that predicts
the dynamic evolution of the measurable link angles according
to a hidden gait-state that evolves from its initial conditions
according to a dynamic model. We begin by defining the gait-
state vector x to be estimated,

o(t) = (p(t) p(t) Ut) ()", (1)

comprised of phase p, phase rate p, stride length [, and the
ground inclination r. The gait-state at time %k evolves to time
kE+1as

Tr+1 = Fay + wg, 2

with wq distributed as zero-mean Gaussian process noise of
covariance X and state transition matrix F' as
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This choice of F' represents a simple numerical integration
of phase rate using the time stride At. We model ¥q as a
diagonal matrix diag[o?,, 03,035, 0%4] X At, with 092, 033,
and 044 being standard deviations for p, I, and r, respectively.
The phase variable p generally has no process noise i1 to
represent the noiseless integration of p. The phase variable p
is wrapped within [0, 1) using the modulo operation.

B. Nonlinear Stride Length Transformation

Within walking, there exists an upper limit on a person’s
stride lengths, which is determined by the length of their legs.
Additionally, we can choose to model the smallest possible
stride length as 0, as negative stride lengths that could model
backwards walking are instead handled by positive stride
lengths and negative phase rates. To encode these choices,
we model the stride length as the output of an arctangent
transformation [19], to which the input is a ‘pseudo-stride
length’ [,,. The arctangent transformation is defined as
s
2l
This saturates the stride length output at 2 (meters) and floors
it at 0. [, is allowed to vary freely during EKF estimation.

1) = Zatan(31,) + 1. 4)

Our state vector x technically contains [, instead of [, but
for a more intuitive understanding of our estimation, we
referred to it as containing stride length instead of its ‘pseudo’
counterpart. We also account for this change of variable when
taking partial derivatives; for example, within the Jacobian
H in the update step of the EKF, we multiply all partial
derivatives with respect to [ by aa—llp.

C. Measurement Model

In contrast to our simple linear process model, the gait-state
uses a non-linear function h(z) to predict both joint angle and
angular velocity measurements. The joint angle measurements
arise from a regressed gait model hgai¢ () trained on human
biomechanical data, while the angular velocity measurements
can be estimated using the differentiation chain rule. The gait
model hgait () is trained offline, but is evaluated in real-time.
The continuous gait model hgai¢ () predicts global foot angle
6y, global shank angle 6, global thigh angle ¢,, and global
pelvis angle 6, (all potentially measurable by sensors on a
lower-limb wearable robot), and this function is denoted by
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Additionally, given knowledge of the phase rate p, we can
also model the angular velocity of the foot 6, shank 6, thigh
0:, and pelvis 0, using the differentiation chain rule:
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where p is the estimate of the phase rate from the pre-
diction stride and the partial derivatives of 0y, 0., 6;, and
0, are available analytically from the regressed gait model.
Phase substitutes in for stride time when parametrizing the
gait cycle. The full observation function is then h(x) =
[9f79f,95795,&,9’,5,61,79.,,}? In a practical implementation,
these variables will be measured by a combination of sensors
on the system chosen by the researcher. In this investigation,
we analyzed the impact of using subsets of this 8x1 vector to
drive gait state estimation (e.g., using only shank angle and
its velocity).

The gait model hgais(x) is regressed from labeled train-
ing data from a 10-subject able-bodied dataset [36], which
contains walking data grouped by strides, over a range of
speeds (0.8, 1, and 1.2 m/s) and ramps (-10 to 10 degree
inclination in increments of 2.5 degrees). Ground-truth phase,
phase rate, stride length, and ground inclination, along with
the measurements of the global angles at each condition, are
readily available from this dataset. The gait model hgai ()
takes as input the gait state vector x and outputs the best-fit
estimates of the kinematic measurements.

For least-squares regression, hgait(m) is formulated as

hgait(z) = ¢ RT (), (7)



where ¢ € R44*4 is a matrix of real-valued model parameters
and R : R* — R ! g a gait-state-dependent regressor
row-vector. The parameters ¢ are chosen to minimize the sum
squared error for each equation of the form

(05(t) 0.(t) 6:(t) 6,(t)) = R(x(t))o, (8)

for all times ¢ in the training dataset (treating each instant of
each step by each participant in each trial as a separate t).

The definition of R(x) makes extensive use of the Kro-
necker product, ® to construct large row-vectors from smaller
row-vectors. To review, the Kronecker product of row-vectors
AcR™ N and B € R"™M  expressed as A® B € RMXNVM|
is the block row-vector (a1 B a2B anB). In the case
of matrices A € R™*N, B € R™*M  this generalizes to

a1B  a2B a1nB
a21B  agB asn B

A®B: ] eanXN]W. (9)
anlB anQB anNB

The regressor is defined as

R(x) = By(p) @ Ar(r) @ Ai(1) @ Ap(p), (10)

that is, it combines the effects of the four simpler behaviors
such that the final model depends on p, I, and r. The
components are as follows:

« B,(p) : The Boolean selector row R — R!*4,
(1,0,0,0) if 0<p<0.l,
0,1,0,0) if 0.1 <p< 0.5,
Byp) = L0 P (11
(0,0,1,0) if 0.5 <p < 0.65,
(0,0,0,1) if 0.65<p<1,

which divides the gait phase into four sections. In our
gait model, we chose four Bernstein polynomials (see
A, (p) below) to represent the kinematics; Bernstein
bases have an equivalent span to polynomial bases and
have previously been useful in gait modelling [36]. The
sections were determined by inspection of the nominal
biomechanical kinematics in our dataset.

o A, : The ramp angle basis (R — R!*3) is a second-order
polynomial Bernstein basis in ramp angle,

A (r) = ((1 -2 21 —7r)r r2) ,
which allows for continuous adjustment to ground slope.
o A; : The stride length basis (R — R*?) is a second-

order Bernstein polynomial basis in stride length,

(1—1)?

which allows for kinematic changes associated with stride
length.

e A, : The phase-polynomial basis R + R is a
Bernstein polynomial basis, defined as

Ap(p) = ((1—p)® 31 —p)?p 3(1-pp* p?).

12)

A(l) = 2(1-01 1%, (13)

(14)

D. Measurement Model Constraints

To ensure desirable gait model properties, such as continuity
of the function hg,it(z) (the global angle predictions) and
realistic behavior with changing stride length, the elements of
the parameter matrix ¢ are subject to constraints. To express
the C° continuity of the model, we require lim heait(z) =

p—rp

lim hgait (z) for all 0 < p < 1 as well as the special wrap-
p—pt

lim hgalt( x). This is
p*}

trivially satisfied everywhere except at p = 0.1, 0.5, 0.65,
and in the wrap-around case. In these four cases, equality
constraints must be satisfied for all possible stride lengths and
ramp angles. We express this constraint on ¢ using a matrix
equality:

(1 —100)® Ay, ® Ay; @ Ap(0.1)

(01 —10)® Ay, ® Ayt ® Ap(0.5)
(001 —1)® Avy ® Ay ® Ap(0.65)

around case where hm hgalt( x) =

¢ = 036x4, (15)
[(0 001)®Av, ® Ay @ Ap(1)
—(1000)® Ay, @ Ay; ® Ap(O)]
where
A, (10) Ai(0)
AVr = AT(O) and Avg = Al(l) (16)
A, (—10) A(2)

serve to constrain all parts of the quadratic fits in r and [ by
specifying three (arbitrary but unique) points of each.

To express the C! continuity constraint, we exploit the
linearity of the Kronecker product. For almost all p we can
express the derivative

dhl i (x) dA,(p)
gait ’4 p
————F = |B A, N ————=| ¢, (17
- W0)© A @ M) e =F P |6, (17)
since dB%@ is zero almost everywhere.
P

Note that dA,/dp : R — R'Y** is available analytically.
The resulting continuity constraint is then
1 —100)® Avr @ Avi ® dA,/dp(0.1)
01 —10)Q® Avr ® Ay; ® dA,/dp(0.5)
001 —1)® Avr ® Ay; ® dA, /dp(.65)
(0001)® Avr @ Ayt ® dAp/dp(1)

~(1000)® Av, ® Avi ® dA, /dp(0)]

(
(
i ¢ = 036x4, (18)

simply requiring that the derivatives match on either side of
each potential discontinuity in p (for all values of r and [).

To ensure constant-with-phase behavior when stride length
is zero, i.e., when the person is standing still, we require

v op angles are constant
—_——f
T
V By(p),  Vrif =0, Ap((l)) 1
A~ ——— | AL
I @Ay @ N(0)® Apgig ¢ =lugx1 ® 22
p
Apé) Cq
(19)

The constraint takes a form similar to the Kronecker con-
struction of the regressor, but where the regressor has By (p),
the constraint uses an identity matrix. The purpose of this
is to expand the row dimension of the constraint so that it
applies to any of the four possible cases for B, (p). Similarly,
where the regressor has A,(p), the constraint has a block
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phase and ramp (with stride length constant at 1 meter).

matrix that constrains the polynomial at four points (enough
to ensure the third-order polynomial expression is equal to a
constant everywhere). Taken together, these two components
of the constraint equation force all four 3rd-order parts of
the piecewise polynomial A([p,p,l = 0,7 = 0]7)¢ to be
constant for all the measured kinematics. Any four unique
phase points could replace the constants 0, §, 3, 2 and achieve
the same effect of constraining the 3rd-order polynomials to
be everywhere zero.

To enforce that the gait model has zero derivative with
respect to stride length at zero stride length, we apply a
constraint similar to (19), using dd—[;’ instead of A;:

v p ignoring pelvis
VB,,r, if =0, —_—
—_— Ap(0) 1 0 0 d/dp=0
di; Ap(d) 0 1 0 —~
I ® Avr ® —(0 P =0 20
1 ®Avr ® — 0 Ap(%) 0] 0 0 1 483 (20)
Ap(3) 0 0 0

We also constrain the pelvis to be a linear fit with respect to
stride length by constraining it to have a constant derivative
with respect to stride length (a constraint similar to (19) with

% instead of A;).

We regressed the model using the constrained least-squares
optimization function 1sglin in MATLAB (Fig. 1).
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Fig. 2. The heteroscedastic measurement noise model as a function of phase.
Foot angle variance o11, shank angle variance o33, thigh angle variance
055, and pelvis angle variance o77, are shown, along with their respective
covariances.

E. Heteroscedastic Noise Model

We developed a heteroscedastic measurement noise model
that dynamically changes the measurement noise matrix X p
based on phase p. In this schema, X is defined as

ER(p) = 2R,Sensor + ER,xsub(p)7 (21)

where YR sensor 1S the traditional measurement noise ma-
trix that denotes how uncertain the measurements are, and
YR xsub denotes the uncertainty present due to inter-subject
gait kinematic variability (subscript xsub for cross-subject). In
this schema, the heteroscedastic model not only encapsulates
the uncertainty present due to each person’s unique gait,
but also can continuously change its trust in the data to
capture regions within the gait cycle where the measure-
ments are more trustworthy due to smaller inter-subject gait
variability (e.g., flat-foot contact). The matrix g sensor Was
: 2 2 2 2 2 2 2 2
set as diag[o{) ., 032 1 033 vy O4ars O35, 066, 077, O r)»
with each o0, , representing the standard deviation for
Gf,éf,ﬁs,és,ﬂt,ét,ﬂp,ép, respectively. In our implementa-
tion, the o, , values that pertained to the angles and angular
velocities were set equal to 1 and 10 respectively.

For ¥ xsun(p) we used the prior dataset to calculate the
covariance matrices of the measurement residuals y for the
eight measured kinematic variables at each of 150 phase values
(Fig. 2). The instantaneous X g xsub(p) Was then calculated in
real-time using the estimate of phase.

F. Candidate Bayes Filter Implementations

The first filter we tested was the Ensemble Kalman Filter
(EnKF), which uses Monte Carlo methods to approximate
the state mean and covariance at each time step. This allows
for highly nonlinear measurement maps and makes the fewest
assumptions of the filters we tested. In the EnKF, these
expectations are tracked by N particles X (l), i =1,...N,
which each evolve through the prediction and update steps of
the Kalman Filter. There is a tradeoff between the number
of particles used to track the states and the computational
times involved in the filter. In our simulations, we use an
EnKF with 1000 particles (EnKF1000) and one with 100
particles (EnKF100). In this formulation, each particle is fed
through the dynamics and individually corrupted by samples
from the process noise. Owing to the requirement that > be
strictly positive definite (due to directly needing to sample



from the process noise matrix), o1 was set to le — 20
to approximate the noiseless integration while maintaining
positive definiteness; 022, 033, and g44 Wwere set to le — 2,
le—2, and 1.5e —1 respectively. State means and covariances
were estimated by the empirical means and covariances of the
particles X ,gz) (see [40]).

The Unscented Kalman Filter (UKF) is capable of approx-
imating the posterior mean and variance of nonlinear functions
up to the 3rd order [41]. For the update step of the Kalman
Filter, the UKF approximates the mean and covariances of
the states using quadrature integration and carefully selected
Sigma Points X[ and weights wl?. The Sigma Points X!
and w!l were generated using o = le — 3, 8 = 2 for the
Gaussian approximation, and x = 0 according to Wan and
van der Merwe [41].

The Extended Kalman Filter (EKF) locally linearizes the
nonlinear parts of the system (the gait model) for a simple
approximation of the normal Kalman Filter. It makes the
strongest approximations about the problem, but offers the best
computational performance. State means and covariances were
updated using the standard linear Gaussian update equations
using the Jacobian of h with respect to the gait-state vector x
[42].
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Fig. 3.  The Bayesian filter and gait model regression processes. In this
cross-validation study, gait data from our dataset is segregated into training
strides from non-excluded subjects that are used to regress the gait model,
and validation strides from the subject being evaluated. The gait model is then
used within each of the four candidate Bayesian filters. The validation strides
contain sensor measurements that are input to the Bayesian filter, which then
uses the gait model to yield gait state estimates that are compared to the true
states from the validation strides.

G. Evaluation of Bayesian Filtering Problems

We evaluated each Kalman Filter with different measure-
ment configurations: 1) full, in which the filter had access
to foot, shank, thigh, and pelvis angle data (along with their
respective velocities), 2) four configurations in which a differ-
ent measurement was left out, 3) six configurations in which
the different permutations of two measurements from the four
kinematics were used (six configurations, e.g., shank-foot,
thigh-pelvis), and 4) four configurations in which each filter
only had a single respective measurement. For the purposes
of abbreviation, the sensors present in each configuration
are given by a string composed of the first letter of the
angular measurement (foot, shank, thigh, pelvis) aside from
the full configuration, which contains all four sensors (e.g.,
the configuration of shank-foot is ‘fs’). For the simulations
where angle sensors were dropped from the filtering, the
corresponding observation functions were ignored during the
filter calculations.

For each combination of filter type and measurement model,
we evaluated the combination’s gait-state estimation on a

simulated walking task that used the data from the same
dataset used to regress the gait model. To simulate the filter’s
performance on unseen subjects, we performed a leave-one-
out cross-validation on all ten of the dataset’s subjects. For
each subject, this cross-validation trained a new gait model
and heteroscedastic noise model using the walking data from
the remaining nine subjects. The subject’s kinematic and
walking data were then input to each filter, which estimated
the underlying gait-state (Fig. 3). Errors for each of the
states at each time point were calculated as the difference
between the state estimate and its respective ground truth
state measurement from the dataset. This process was repeated
for all ten subjects, and the errors were aggregated to obtain
overall distributions that described each filter combination’s
performance in estimating each element of the gait-state. For
the EKEF, in addition to the configurations above, we evaluated
the estimation of limited subsets of the gait-state: 1) a subset
where incline was excluded (Cancel Incline), 2) a subset where
stride length was excluded (Cancel Stride Length), and 3)
a subset where phase and phase rate only where estimated
(Phase Only). This simulation was motivated by the potential
for limited sensor configurations to still estimate parts of the
gait-state vector. Ground truth measurements and state errors
were computed as in the simulation with the full gait-state
vector. To mitigate the effects of an increasing EKF bandwidth
due to the removal of states from the filter, the elements of
g were scaled in the following way: for Cancel Incline,
o33 was scaled by 0.5; for Cancel Stride Length, 44 was
scaled by 0.5; for Phase Only, 017 and 092 were scaled by
0.5. To obtain an overall metric for estimation performance,
we computed the Mahalanobis distance between the gait-state
estimate and the ground truth state at each time point. This
Mahalanobis distance was normalized using the average state
covariance matrix P, from the full-state, full-measurement
EKF simulation; for the simulations where subsets of the
gait-state were estimated, we used the subset of Py, that
corresponded to those gait-states. This error metric captured
the overall estimation performance of each combination of
gait-state and measurement configuration. We then normalized
these errors by the error from the full-state, full-measurement
EKF simulation to aid in comparisons.

III. RESULTS

Overall, the Extended Kalman Filter (Fig. 4A) was able
to consistently estimate the gait-state despite its restrictive
assumptions. With the full measurement configuration, the
EKF featured an average phase error of 0.01 + 0.02 (SD), an
average phase rate error of —0.01£0.03 1/s, an average stride
length error of 0.03 +0.10 m, and an average incline error of
0.08 £ 1.86 degrees. Gait-estimation performance was similar
with the UKF (phase: 0.012-0.01, phase rate: —0.01 £ 0.03,
stride length: 0.03 £ 0.10, incline: 0.06 £ 1.96), while the
EnKF implementations with 1000 particles (phase: 0.0340.06,
phase rate: —0.02 £ 0.05, stride length: 0.03 £ 0.10, incline:
0.16 £2.66) and 100 particles (phase: 0.16 £ 0.14, phase rate:
—0.06£0.41, stride length: —0.45+0.33, incline: 0.4447.31)
were less reliable.
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Fig. 4. (A) The errors for all four elements of the gait-state for the four types of Kalman Filter, using each sensor configuration. The means are denoted by
the solid circles, with standard deviations given by the vertical lines. Generally speaking, the EKF and UKF provide the best estimation for the four states.
For the purposes of abbreviation, the sensors present in each configuration are given by a string composed of the first letter of the angular measurement (foot,
shank, thigh, pelvis) aside from the full configuration, which contains all four sensors (e.g., the configuration of shank-foot is ‘fs’). (B) Representative results
for the three Kalman Filters run in this simulation, with the full sensor configuration. These results were randomly selected from a single subject in the in
silico cross-validation. The ground truth states are shown in solid red, with the filter estimates shown in blue. Phase is not shown since it is not perceptible at
this time scale, but the estimation quality can be inferred from phase rate graphs. (C) EKF estimation performance for the fifteen measurement configurations
and four different state vector configurations. Combined state errors were calculated using the Mahalanobis distance weighted by the average state covariance
matrix from the baseline case (full sensing, full state, top-left). Errors were then normalized by the error of the baseline state, with higher errors shown in
darker colors.

A representative trial of each filter’s performance exem-  distance metric. In some sparse sensing configurations (s,
plifies these errors (Fig. 4B). For this representative trial, t, f, sp, st, stp, ftp), gait-state estimation performance was
we computed the average root mean square error (RMSE)  improved by removing either stride length or incline from the
across all individual strides for each state variable. The EKF  state vector (Fig. 4C). Canceling the incline state seemed to be
(phase RMSE: 0.01 £ 0.009, phase rate RMSE: 0.02 £ 0.02, more effective than cancelling stride length, with the exception
stride length RMSE: 0.08 & 0.06, incline RMSE: 0.72+1.62  of sp, {, fp, and the full configuration. The configurations of s,
degrees) was again comparable to the UKF (phase RMSE: sp, and st were capable of estimating phase accurately without
0.01 £ 0.009, phase rate RMSE: 0.02 £ 0.02, stride length the task variables.
RMSE: 0.08 4 0.06, incline RMSE: 0.73 + 1.64); the EnKF
with 1000 particles (phase RMSE: 0.03 4 0.06, phase rate ) . . .
RMSE: 0.03 +0.04, stride length RMSE: 0.08 +0.07, incline ~ Despite being the filter with the weakest assumptions and
RMSE: 1.2 4+ 2.5) was also similar, while the EnKF with theoretically best ability to capture the gait-state probability
100 particles (phase RMSE: 0.15 % 0.15, phase rate RMSE: distribution as it evolves through the nonlinear gait model,

0.27 £ 0.25, stride length RMSE: 0.38 + 0.21, incline RMSE:  the EnKFs were overall the worst performing filter based on
4.95 + 4. 42’) was still the poorest estimator. ' gait-state errors. In particular, the EnKF with 100 particles

(EnKF100) was the worst filter overall, as it featured the

For the EKF implementation, removing the pelvis or shank  highest standard deviations for phase error and incline, and
measurements did not excessively deteriorate estimation of  significant biases for stride length error. While increasing
the full state vector in terms of the normalized Mahalanobis  the number of particles from 100 to 1000 mitigates these

IV. DISCUSSION



errors, the EnKF1000 is at best roughly equal to the EKF
or UKF. During the simulations, the added complexity in
the EnKF1000 led to drastically increased run-times when
compared to the EKF and UKF. Taken together, this indicates
that the added complexity from an EnKF may be unnecessary
for this gait-state estimation task, and instead a simpler EKF
or UKF may suffice for the control of an exoskeleton.

The EKF and UKF have close state errors and are thus
comparable in performance (Fig. 4A), particularly for the mea-
surement configurations with only a single sensor removed.
This has numerous implications for the potential applications
of the Bayesian framework to the continuous control of lower-
limb wearable robots. For example, the gait model & at the
heart of the filters must be linearized in the case of the
EKEF, which can introduce significant error. However, the EKF
performed comparably to the UKF, which can approximate
models of up to the third order [41] with more points, and
the EnKF, which can more closely approximate the output
distributions during the update steps. This indicates that the
simple linear approximation of the EKF is sufficient for gait
estimation using the gait models developed in this work.

The magnitudes of the phase error from the EKF (0.01 £+
0.02) are comparable to recent methods based on Gaussian
Processes [15] (phase RMSE: 0.04 &+ 0.005) and machine
learning [23], [24] (0.07 £ 0.03 from [23], 0.04 £ 0.006 from
[24]), although direct comparison is impossible due to the
different testing methods. The EKF incline errors (0.08 +1.86
degrees) are also similar to prior work that estimated ground
inclination in real-time using machine learning [43] (incline
RMSE: 2.15° +0.29°). As depicted in the representative trial
(Fig. 4B) for the EKEF, stride length was generally the state
with the greatest estimation discrepancy. This error is likely
due to the inter-subject gait model being unable to fully
distinguish a person’s individual gait to better estimate their
stride length [18].

In terms of the sensor configurations, predictably, the full
sensor array produced the lowest errors. However, some
measurement configurations, such as the foot-shank-thigh and
foot-shank, have comparable errors to the full configuration,
especially for the EKF. Taken together, these results point
to the EKF as being the best choice for the gait-state esti-
mation task, and motivated the simulation experiment using
the EKF to identify which subsets of the state vector can be
estimated using limited sensors. While prior work in gait phase
estimation yielded good estimates of phase with thigh angle
alone [19], [21], [26], [27], [44], these approaches employed
normalization techniques that are not reproduced in our EKF’s
thigh-only estimation process.

When the measurement vector was limited in simulation,
some states were still able to be effectively estimated using
the EKF. In terms of the normalized estimation error outlined
above, limited sensing configurations such as foot-shank-
thigh and foot-thigh are comparable in error to the full-
sensing configuration for the full-gait-state case. In particular,
the pelvis measurement appears to be the least informative,
as configurations with it have similar normalized errors as
configurations without. Furthermore, the pelvis sensor alone is
easily the worst single measurement across all four gait-state

vectors. This suggests that this measurement can be dropped
in a practical implementation of the EKF. Conversely, for the
most limited case of phase-only state estimation using the
EKF, the shank measurement is the optimal choice if only a
single measurement is allowed. This indicates that the shank
measurement is among the more informative measurements
within the EKF framework, and should thus be prioritized
in allocating sensors. The overall flexibility of the sensor
configuration is a strength of the continuous gait model at
the heart of the Kalman Filter. Unlike past methods for
estimating the gait-state which required explicit rules to handle
new measurements [21], [22], the EKF can incorporate new
measurements by simply regressing a relation between the
gait-state and the kinematic measurement offline, and then
extending the measurement vector in the Kalman Filter. Sim-
ilarly, the gait state vector can also be extended to include
other task variables such as stride height for ascending stairs.

V. CONCLUSION

We investigated the challenge of estimating gait behavior
(phase and task variables) using Bayesian filtering with the
sensors available to lower-limb wearable robots. We found
this estimation problem to be tractable in silico, even with
restrictive EKF assumptions and sparse sensing configurations.
Our results suggest that an EKF is a good choice for con-
tinuously estimating phase and task to drive and adapt an
exoskeleton controller. Furthermore, reduced gait-states can
be estimated with far fewer measurements using the proposed
framework (for example, shank can be used alone if the user
wishes to only estimate phase). Future work will involve
testing these Kalman Filters on actual exoskeleton hardware,
including modular joint configurations [45], to validate them
in the real world.
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