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Can humans perceive the metabolic benefit
provided by augmentative exoskeletons?
Roberto Leo Medrano1,3*, Gray Cortright Thomas1,2,3 and Elliott J. Rouse1,3

Abstract

Background: The purpose of augmentative exoskeletons is to help people exceed the limitations of their
human bodies, but this cannot be realized unless people choose to use these exciting technologies. Although
human walking efficiency has been highly optimized over generations, exoskeletons have been able to
consistently improve this efficiency by 10% - 15%. However, despite these measurable improvements,
exoskeletons today remain confined to the laboratory. To achieve widespread adoption, exoskeletons must not
only exceed the efficiency of human walking, but also provide a perceivable benefit to their wearers.

Methods: In this study, we quantify the perceptual threshold of the metabolic efficiency benefit provided
during exoskeleton-assisted locomotion. Ten participants wore bilateral ankle exoskeletons during continuous
walking. The assistance provided by the exoskeletons was varied in two minute intervals while participants
provided feedback on their metabolic rate. These data were aggregated and used to estimate the perceptual
threshold.

Results: On average, participants were able to detect a change in their metabolic rate of 22.7% (± 17.0%)
with 75% accuracy. This indicates that in the short term, wearers are not able to perceive the metabolic
benefit from any modern augmentative exoskeletons.

Conclusions: If wearers cannot perceive the benefits provided by these technologies, it will negatively affect
their impact, including long-term adoption and product viability. Future exoskeleton researchers and designers
can use these methods and results to inform the development of exoskeletons that reach their potential.
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Background
The purpose of augmentative exoskeletons is to help
people exceed the limitations of their human bodies.
These technologies apply mechanical assistance to the
joints of the legs during locomotion, thereby reduc-
ing the physical demands on the wearer’s neuromus-
cular system. The potential uses for these technologies
are broad and impactful, including assisting people’s
abilities to walk, run, jump, and/or carry loads. Con-
sequently, lower-limb exoskeletons may improve the
mobility of people with disabilities, as well as those
completing sustained, physically demanding activities
(e.g. first responders, postal/supply chain workers, and
military personnel, among others). Recently developed
systems for human augmentation applications are un-
tethered [1, 2, 3], lightweight [4, 5, 1], and powerful
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[6, 7]. While recent work has been encouraging, an
ongoing challenge has been quantifying the success of
these systems; the quantification of an exoskeleton’s
ability to reduce the metabolic expenditure of walking
(i.e. calories burned) has emerged as a focus of the
field [8].

Exoskeleton researchers have focused on the reduc-
tion of metabolic rate because it is intuitive, mea-
surable, and supported by previous research. State-
of-the-art exoskeletons have consistently reduced the
metabolic expenditure needed for walking by approx-
imately 14% relative to not wearing an exoskeleton
[9, 10, 2, 5, 11, 12, 13]. These exoskeletons apply pow-
ered assistance at either the ankle joint [9, 10, 5, 11,
12, 13] or hip joint [2] and implement control strategies
that operate in tandem with the wearer to reduce their
metabolic expenditure. Intuitively, if an exoskeleton
is successful, the muscular effort required will be re-
duced, which should be reflected in an upstream reduc-
tion in the metabolic power required from the wearer.
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In addition, metabolic expenditure can be objectively
measured in a laboratory setting, meaning it does not
have the challenge of quantification that plagues other
potentially subjective metrics of success (e.g. comfort,
stability, or preference, among others).

There is mounting evidence that humans may
be able to ‘subconsciously’ perceive their metabolic
rate, but it is not yet known whether these changes
can be perceived consciously. Donelan et al. showed
that people choose step widths that minimize their
metabolic rate during walking [14]. Subsequently,
Selinger et al. demonstrated that exoskeleton wear-
ers can re-optimize their gait patterns to minimize
their metabolic rate when manipulated externally
(with an exoskeleton) [15]. That is, the resistance of
a knee exoskeleton was varied to incur a metabolic
penalty during normative walking patterns, and par-
ticipants needed to modify their gait patterns to re-
duce the superimposed metabolic burden. Participants
converged to non-normative gait patterns that mini-
mized metabolic rate, but this optimization did not
occur spontaneously outside the laboratory [16]. Since
exoskeleton wearers choose gait patterns that reduce
metabolic rate, we believe this indicates people have
some ability to sense this quantity (or something cor-
related). However, since people do not spontaneously
stay or return to their lowest rate, it suggests that ex-
oskeleton wearers do not have conscious knowledge of
their metabolic rate or its gradient.

Conscious perception is a critical part of decision
making. For an exoskeleton to appear valuable to its
potential wearer, it must provide an experience that
illustrates this value. Furthermore, this value must off-
set the potential “costs” of exoskeleton use. For exam-
ple, without an intuitive and perceivable understand-
ing of value, potential users may be unlikely to adopt
exoskeletons with known disadvantages (e.g. monetary
cost, discomfort, or being unfashionable). Previous re-
search in the field of management science has investi-
gated the implications of perceived value in technology
adoption; one relevant framework proposed by Davis is
the Technology Acceptance Model (TAM) [17]. In this
model, Davis found a significant correlation between
the consciously perceived usefulness of software and
users’ intent to adopt the software [17]. More recently,
King and He found that this relation was generaliz-
able across many different technologies [18], such as
broadband internet [19], telemedicine [20], and smart
watches [21]. Thus, when potential exoskeleton users,
manufacturers, and others are weighing the choice to
adopt or purchase an exoskeleton, the consciously per-
ceived value must outweigh the price, weight, aesthet-
ics, and other costs of wearing a lower-limb exoskele-
ton.

The field of psychophysics focuses on quantifying hu-
man perception broadly [22]; for example, sensing may
involve perception of images, temperatures, sounds
[23], or metabolic rate. Forced comparison between
two stimuli (such as asking which of two lines appears
longer) across different trials is a powerful method
for determining how humans can perceive changes in
stimuli. This pair of stimuli is composed of a refer-
ence, which usually remains constant across trials, and
a comparison, which changes from trial to trial. By
analyzing large numbers of these comparisons, a per-
ceptual model can be built that encodes and quan-
tifies people’s perceptual performance. The input to
this model is the true difference between the refer-
ence and the comparison, and the output is a prob-
ability of the comparison being perceived as different
from the reference. The model predicts that stimuli
are accurately perceived when the difference between
the stimuli is large, but that human perception be-
comes essentially random when the difference is small.
These models are often visualized using a psychophysi-
cal curve [24], typically a sigmoid function. In general,
a single psychophysical curve pertains to the specific
reference stimuli about which the test is conducted.

The steepness of a psychophysical curve quantifies
perceptual ability; namely, the smallest difference in
stimuli that can be perceived reliably. Using a thresh-
old for reliability of 75% [25], this delta is known as the
Just Noticeable Difference (JND). The JND has been
used to quantify meaningful differences in visual acuity
[26], sound [27], taste [28], and weight [29]. Recently,
wearable robotics researchers have begun to quantify
the JND of various factors in the design and control of
wearable robotic systems, including perception of pros-
thetic ankle stiffness by users [30] and clinicians [31],
environment stiffness [32] and viscosity [33], electrical
stimulation of the residual limb [34], and vibrations of
an osseointegrated prosthesis [35].

In this study, we characterized exoskeleton users’
conscious perception of their metabolic rate during as-
sisted walking by quantifying the JND of metabolic
rate changes. Understanding the human perceptual
ability to sense this change is important because it
has emerged as the gold standard by which exoskele-
tons are designed, controlled, and assessed. If exoskele-
tons are developed to impact a metric that is not per-
ceivable by the user, it will likely hinder widespread
success. To this end, we indirectly imposed different
metabolic rates sequentially during walking by adjust-
ing the assistance provided from bilateral ankle ex-
oskeletons. Simultaneously, we recorded whether users
perceived their metabolic rate to have increased or
decreased as the control strategy changed. We aggre-
gated these data to estimate the JND for changes in
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metabolic rate. The contribution of this work includes
new fundamental knowledge of how metabolic rate can
be sensed during locomotion and a new benchmark for
future exoskeleton developers who desire perceivable
impact on metabolic expenditure. In addition, these
results underscore the need for new metrics of exoskele-
ton success that are aligned with the value and expe-
rience of the user.

Methods
Participants
In this study, ten able-bodied participants (N = 10,
2 female, 8 male; age = 22.5 ± 3.17 years; mass =
70.9 ± 11.9 kg, Table. 1) walked using bilateral ankle
exoskeletons on a treadmill. The required number of
participants was chosen based on a power analysis to
quantify a JND of 15% with 80% power and 5% type
1 error rate. We chose 15% as this was representa-
tive of the reductions achieved by the best performing
lower-limb exoskeletons [36, 37, 38]. All participants
provided written informed consent before participa-
tion. The study protocol was approved and overseen
by the Institutional Review Board of the University of
Michigan Medical School.

Table 1 Participant Data

Participant Number of Responses Gender Weight Age
[0.5ex] 1 53 M 52.2 20

2 100 M 74.0 23
3 34 F 72.0 21
4 100 M 86.0 24
5 100 M 78.5 21
6 100 M 74.0 23
7 100 M 82.5 24
8 100 M 59.0 19
9 100 F 53.5 20

10 100 M 77.0 30

Experimental Protocol
Walking Protocol
Participants experienced numerous metabolic rate
changes in sequence that stemmed from the assis-
tance provided by the ankle exoskeletons. Participants
walked for 20 minute blocks, where each block con-
sisted of 10 trials in series. Following each pair of tri-
als, participants responded regarding which condition
they perceived had a higher metabolic rate by agree-
ing or disagreeing to the binary question “is the cur-
rent level of exertion higher than the previous level of
exertion?”. Participants responded non-verbally with
either a ‘thumbs up’ or a ‘thumbs down.’ Thus, each
block consisted of nine comparisons across ten trials
and participants completed approximately 11 blocks
across three to four days of data collection. We chose

the two minute walking duration for each trial to bal-
ance metabolic estimation quality with experiment du-
ration; Zhang et al. demonstrated that the metabolic
estimation error with two minutes of data is approx-
imately 2% [39]. The two-minute trial duration also
allowed the participants adequate time to experience
and react to each walking condition.

Prior to the experiment, participants familiarized
themselves with several aspects of the experimen-
tal protocol. Participants read a lay explanation of
metabolic rate to familiarize themselves with the con-
cept. Next, participants were primed to react to their
feeling of general exertion by reading the instructions
of the Borg Rating of Perceived Exertion [40, 41]. We
chose to have the participants read information on
the Borg Scale because it has previously been demon-
strated to produce accurate estimates of exertion [42].
Finally, participants underwent a four-minute acclima-
tization period in which they were exposed to differ-
ent representative exoskeleton behaviors that spanned
what could be encountered during the experiment.
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Figure 1 Sample exoskeleton current profiles used in this
experiment (colored lines). The profiles resembled square
pulses and were parametrized using the following parameters:
the peak current of the profile, the onset time of the profile,
and the duration of the profile. The total bounds of possible
current profiles are delineated by the black dashed line. The
profiles’ currents were mapped to motor torques through the
motor torque constant and exoskeleton’s transmission.

Exoskeleton Control
We used bilateral ankle exoskeletons (Dephy ExoBoot,
Dephy Inc. Maynard MA) to manipulate the metabolic
rate of the wearer. The exoskeleton (Fig. 2B) used
electric motors (∼300 W) and flat cable transmission
(∼15:1) to apply plantarflexion assistance during walk-
ing. The assistance was governed by parameterized
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current profiles that resembled a square pulse (see Fig.
1). The current profiles were governed by three param-
eters; we manipulated the onset timing, pulse magni-
tude, and pulse duration. We chose i) onset timings
from a uniform distribution bounded between 25% and
50% of stride time, ii) pulse magnitudes from a uni-
form distribution bounded between 15 A and 25 A
(corresponding to approximately 12 and 20 Nm with
the ExoBoot’s nonlinear transmission), and iii) pulse
durations from a uniform distribution with variable
bounds. The variable bounds for the pulse duration
depended on the sample drawn from the onset timing
distribution such that the square pulse had a minimum
duration of 10% of stride, and a maximum duration of
60% of stride time. Onset timings that occurred ear-
lier than 30% of stride were additionally constrained
to have a minimum pulse duration of 20% of stride,
which was imposed to prevent excessive device wear.
We chose these bounds as they have been shown to
significantly alter participant metabolic rate, and thus
allow us to sample as wide an energetic range as pos-
sible [43, 44, 12] while balancing device integrity and
user safety. The current profiles were described using
the stride completion percentage to mitigate any vari-
ations in step length or cadence that occurred dur-
ing the trial. Thus, we inferred the stride comple-
tion percentage using heel-strike events. We detected
these events by thresholding the onboard accelerome-
ters (MPU-9250, Invensense, San Jose, CA) [45, 46].

Metabolic Rate Sensing
Participants walked with a randomized torque pro-
file for two minutes, which produced a first-order dy-
namic response in metabolic rate [47]. We measured
participant metabolic rates through indirect calorime-
try [48] (COSMED K5, Rome IT) (Fig. 2A). We
estimated the user’s steady state metabolic rate by
fitting a first-order response [47, 43] to the breath-
by-breath transient data gathered over the two min-
utes for each trial, with the steady state value repre-
senting the trial’s metabolic rate. Prior to undergo-
ing the walking protocol, participants stood still for
four minutes to obtain their baseline metabolic rates.
Each participant’s standing metabolic rate was com-
puted as the average rate over this four-minute inter-
val. The standing metabolic rate was subtracted from
each trial’s metabolic rate measurement to isolate the
metabolic effects of exoskeleton assisted locomotion
(i.e. net metabolic rate).

Psychophysical Function Fitting
To estimate the Just Noticeable Difference (JND) of
metabolic rate, which denotes the magnitude of change
necessary for consistent perception, our experimental

protocol requires the normalization of metabolic rates.
That is, to compare across sequential trials with dif-
fering references, normalization is needed to combine
these data to obtain a single JND for each subject
under the assumption of a constant Weber Fraction
(see Limitations subsection) [49]. The Weber Fraction
(WF) [50] is a metric that captures the differences in
perceptual thresholds that are dependent on the mag-
nitude of the reference stimulus used in the compar-
isons. By definition, the WF is the JND divided by
the reference stimulus, thus it represents the percent
change from the reference stimulus that is perceivable.
For a wide range of stimulus magnitudes, the WF can
be modeled by a constant [51].

For normalization, consider a sequential pair of
metabolic rates A then B; we normalized B (the com-
parison) as a percent change in rate from A. Note that
rate A is the reference that changes from trial to trial.
We used the normalized metabolic rate differences and
corresponding participant responses to fit a psychome-
tric function. The psychometric function then provided
JNDs with units of percent change of metabolic rate
(rather than absolute units (W/kg)). The JND is then
equivalent to the WF expressed as a percentage.

A logistic psychometric function was used to model
participant responses. This model predicted the prob-
ability that the participant would choose “the com-
parison is greater” as a function of the normalized
metabolic rate difference between the two trials. Using
the convention from above, the psychophysical curve
predicts the probability that rate B is greater than rate
A, as a function of the relative difference between A
and B. The logistic function of (reference-normalized)
stimulus x had the following form,

Ψ(x, α, β, γ, λ) = γ +
1 − λ− γ

1 + e−β(x−α)
(1)

where Ψ(x) was parametrized by the following vari-
ables: the experimental lapsing rate λ, which was fixed
at the commonly used value of 0.02 [22]; the false pos-
itive rate γ, which was fixed at the lapsing rate since
participants underwent a stimulus discrimination task
[22, 52]; the logistic function’s threshold point α on the
x-axis, which anchors the center of the logistic curve
and was set to 0; and the parameter β which governs
the slope of the logistic function and is the only degree
of freedom estimated during the fitting procedure.

Using the modeled psychometric curve, we quantified
the Just Noticeable Difference (JND) which represents
the minimum change in metabolic rate that must oc-
cur before an observer can reliably perceive with 75%
accuracy [53]. The JND is calculated by taking the
difference between the values of x at Ψ(x) = 0.75 and
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Ψ(x) = 0.25 and dividing the difference by two. By
fixing the other parameters of Ψ(x) at the values spec-
ified, the JND thus depended only on β

JND = k/β, (2)

with a scale constant k in terms of the fixed parame-
ters,

k =
1

2
ln

[
(0.75 − γ)(1 − λ− 0.25)

(1 − λ− 0.75)(0.25 − γ)

]
. (3)

Shallower slopes (indicating less sensitivity) caused
higher JNDs, while steeper slopes (indicating higher
sensitivity) caused lower JNDs.

Statistics and Comparisons
A separate logistic model was fit for each participant
using Bayesian analysis [54]. This approach yielded a
posterior distribution of JND estimates for each par-
ticipant. From this posterior distribution, we extracted
the maximum likelihood estimate for each participant,
which was considered the estimated JND [55]. Our
approach of using Bayesian estimation enables quan-
tification of both the JND value for each subject in
addition to the uncertainty about our estimates. We
chose Bayesian estimation because preliminary work
indicated the conventional Maximum Likelihood Esti-
mation approach could fail to converge [56]. We con-
ducted our Bayesian analysis using the PyMC3 library
in Python [57]. Each participant’s prior distribution of
JND estimates was chosen as a uniform distribution
between 0% and 70%, representing a plausibly large
range of perceptual abilities.

The posterior JND distributions were obtained by
updating our prior distributions using the partici-
pant response data. We used the No-U-Turn Sampler
(NUTS) [58] strategy—a Markov Chain Monte Carlo
(MCMC) algorithm—to numerically approximate the
posterior distribution of possible JND values; we used
four sampling chains with 8000 tuning iterations and
4000 posterior predictive samples. We chose these val-
ues to balance computation time and accuracy. The
JND with the highest likelihood in the posterior dis-
tribution was the nominal JND estimate. Each poste-
rior also yielded a 95% credible interval for the JND
estimates.

Our approach using Bayesian statistics enabled in-
vestigation of several assumptions made about the
JND distributions. We compared three different JND
models using the Watanabe-Akaike Information Cri-
terion (WAIC) metric, which evaluates the predictive
power of models and corrects for the number of model

parameters to favor parsimony [59]. The three compet-
ing models were: i) a pooled model that featured a sin-
gle JND parameter and posterior distribution that ap-
plied to all participants; ii) an independent model that
assumed each participant had a different JND; and iii)
a variable Weber Fraction (WF) model that allowed
for multiple JND estimates per participant depend-
ing on the magnitude of the reference data. In each
model, our parameter estimates were informed by the
data, yielding posterior distributions over all possible
parameter estimates. In the pooled model, the single
JND estimate predicted the responses of all partici-
pants; in the independent model, each participant’s
responses were predicted by individual JND distribu-
tions which we estimated; and in the the variable-WF
model, each participant had two different JNDs for
references above or below the average reference value.
The pooled model featured 2000 tuning iterations and
2000 posterior predictive samples for reduced compu-
tational time, given the greater number of responses
used as input. The remaining models used our default
settings of 8000 tuning samples and 4000 posterior pre-
dictive samples due to the relative sparsity of the data
and the complexity of the models.

Results

(B)(A)

Shin Piece

Boot

Motor

Belt Transmission

Strut

Shank

Figure 2 (A) The exoskeleton-human system (picture taken
prior to the COVID-19 pandemic). Participants walked on a
treadmill and experienced different changes to their metabolic
rates, which were measured using indirect calorimetry. (B) The
Dephy ExoBoot ankle exoskeleton used in the physical
experiment. A brushless DC motor mounted on a rigid shank
assists the user by generating torque through a belt drive
transmission that applies force on a boot-mounted strut. The
exoskeleton is securely attached to the user via a shank
attachment that transmits the actuator’s torque to the leg.

The average inter-participant JND was 22.7% (stan-
dard deviation (SD): 17.0%) (Fig. 3A). Many partic-
ipants were highly attuned to the changes in their
metabolic energetics, while others were less perceptive,
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Figure 3 (A) The psychophysical curve corresponding to the inter-participant average (solid blue, 22.7%) with one inter-participant
standard deviation (shaded, ± 17.0%). (B) Participant-specific data: the likeliest psychophysical curve for each participant (solid
blue), participant responses (red circles), and the 95% credible interval of possible curves from the posterior distribution (shaded
blue). (C) The posterior distribution for the inter-participant psychophysical curve (dashed black) vs. the posterior distributions for
each participant with modeled inter-participant JND differences (blue). The inter-participant model posterior distributions show clear
differences between participants and thus proved a better choice of model. (D) A comparison of different JND models using the
Watanabe-Akaike Information Criterion (WAIC) metric. A higher WAIC score (black circle, standard deviations given by black lines)
indicates a better model. The best model has a light gray dotted line through its empty circle to aid in comparison. Grey triangles
indicate the difference in WAIC between that model and the top model (standard error given by grey bars). (E) The absolute range
of reference costs aggregated across all participants. The vertical red line denotes the average net cost of walking at 1.25 m/s across
different studies [60].
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as evidenced by the high standard deviation of the es-
timates (Fig. 3B). We used a one-sample Kolmogorov-
Smirnov test in Matlab to verify that the inde-
pendent JND estimates from the participants were
normally distributed. The lowest estimated JND was
6.4%, while the highest was 69.9%. Our confidence in
each participant’s JND estimate was given by their re-
spective JND posterior distributions, which represent
the distribution over potential JNDs of each partici-
pant (Fig. 3C). Differences in the JNDs can then be
observed by comparing the shapes of these distribu-
tions; for example, a narrow distribution with a de-
fined peak at a low value represents a participant who
is highly attuned to changes in energetics, while a flat-
tened distribution with a peak at a high value denotes
a participant with a greater JND and less sensitivity.

We used the Watanabe-Akaike Information Crite-
rion (WAIC) [59] to identify the psychophysical model
that best describes our data (Fig. 3D). This metric
evaluates the predictive power of each psychometric
model [61] and corrects for the number of parameters
to favor parsimony; using this metric, we can compare
different models to data and evaluate their goodness
of fit. We evaluated three different models: i) Inde-
pendent - assuming each participant has a single in-
dependent JND (and a constant WF), which allows
for inter-participant differences in JND posterior dis-
tributions ii) Pooled - assuming all participant JNDs
arose from a single posterior distribution, and which
therefore does not allow for inter-participant differ-
ences (this model also features a constant WF), and
iii) Variable WF - assuming each participant can have
two JNDs. The first JND was calculated using the
metabolic data that corresponded to absolute reference
costs in the lower half of that participant’s reference
cost magnitudes, and the second JND was calculated
using the metabolic data in the upper half of reference
magnitudes. Thus, this model featured a non-constant
WF in which the JND varies based on the absolute
magnitude of the reference cost. The best model was
the independent-JND model with a constant WF (de-
scribed in i above), which obtains the highest WAIC
score and is outside the standard error regions of both
competing models.

We examined the range of absolute metabolic rates
experienced by participants in our protocol and veri-
fied that the metabolic rates humans experience while
walking with an assistive exoskeleton (∼10% reduc-
tions from unassisted walking) were included in this
range (Fig. 3E). In conjunction with our constant-WF
assumption, this allows the JNDs calculated here to
also characterize the perception of energetics when hu-
mans are walking with reduced costs due to an ex-
oskeleton.

Discussion
Modern augmentative exoskeletons do not yet provide
a metabolic benefit sufficient to exceed the percep-
tual threshold of human energetics. We demonstrated
that the inter-participant average JND of metabolic
rate was 22.7% ± 17.0%. This is substantially greater
than the typical reductions obtained using state-of-
the-art exoskeletons over the past decade (see Fig.
4) [8]. While some studies have shown metabolic re-
ductions greater than 15% [36, 37, 38], most research
has demonstrated more modest reductions. The mean
reduction in metabolic rate over the past decade is
∼ 9.6%±4.5% (averaged from studies in Fig. 4). Based
on the inter-participant psychophysical curve obtained
in this work, there is a 61% likelihood an average user
would perceive a 9.6% change in metabolic rate, when
compared to walking without an exoskeleton (50% ac-
curacy would be a random guess). Thus, based on the
metabolic rate reductions provided to date [8], these
benefits cannot yet be a critical factor in the short-
term, conscious perception of exoskeleton use. The per-
ceptual threshold presented in this work (i.e. the JND)
can act as a useful benchmark for future exoskeletons
designed to noticeably improve walking energetic effi-
ciency.

For augmentative exoskeletons to demonstrate value
to their wearers, the benefits provided should be per-
ceivable in the short term. Given that state-of-the-art
exoskeletons cannot yet exceed the perceptual thresh-
old of metabolic rate (i.e. > 23%), this reduction in
metabolic rate is not likely to be the driving factor for
why users choose to wear these technologies. Given the
short-term nature of the trials in this study, it is possi-
ble the reduction in metabolic rate is more perceivable
over an extended period of use. While this could posi-
tively impact user experience, perception over a longer
duration may also lead to challenges in experience and
adoption. Prior work in economics has demonstrated
that a benefit provided in the future is less valuable
when compared to a more immediate benefit (i.e. tem-
poral discounting) [62, 63, 64, 65, 66, 67, 68]. Thus,
we believe exoskeletons will be most successful if the
metrics used to develop these technologies are aligned
with what is perceivable and valuable to the user in
the short term. Understanding if and how longer-term
energetic reductions are perceivable, in addition to the
impact of temporal discounting, are important avenues
of future study.

Metabolic rate reduction is currently the “gold stan-
dard” for augmentative exoskeletons, which is sup-
ported by its role in the reduction of joint mechanical
power, previous biomechanical studies, and its objec-
tive measurability. However, our results demonstrate
that the current reductions in metabolic rate are not
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Figure 4 The average JND magnitude (solid red) plotted against the state-of-the-art in exoskeleton-driven metabolic rate
reductions. The 95% confidence interval is shown (shaded red). As of the date of writing, no published device (to the authors’
knowledge) exists that would cause a perceivable short-term energetic benefit to the average wearer. Data reproduced with
permission from [8].

yet broadly perceptible in the short term. The diffi-
culty of perceiving changes to metabolic rate moti-
vates the consideration of alternative metrics which
may be more clearly perceivable by users, including
reduction of muscle fatigue [69, 70, 71], peak joint
forces in arthritic joints [70, 72, 73], and user pref-
erence [74, 75, 76, 77]. The development of perceivable
and meaningful metrics to quantify success in future
exoskeletons is an important challenge for the field.

Previous work investigating the perception of exer-
tion has shown lower thresholds for exertion during
exercise cycling [78]. Haile et al. applied the method
of adjustment [22] to cycling intensity, arriving at a
threshold of 0.15 L/min ˙V O2, but did not provide a
resting metabolic rate for their participants. Using the
resting rate estimates provided in [79], this equates to
a JND of ∼10%. There are several possible explana-
tions for the differences from our results. For example,
the method of adjustment can lead to lower JND esti-
mates [80], and is known to be less reliable [81, 82, 83]
than forced-choice experiments. Additionally, the exer-
tion levels tested were substantially greater than what
was tested in our experiment, and thus might have
occurred in the perceptual regime where the Weber
Fraction was non-constant. Lastly, their method of
moderating exertion used only a single variable (cy-
cling resistance), which is susceptible to confounding
factors. That is, cycling resistance will vary propor-
tionally with muscle loading, which can be more easily

sensed through the Golgi tendon organs, mechanore-
ceptors, and other mechanisms. Thus, any perceptual
thresholds calculated using these sensations could be
confounded to underestimate the true JND of exer-
tion because the participants could intuit a mapping
between the easier-to-perceive cycling resistance and
the harder-to-perceive metabolic effort.

Researchers have established that humans will seek
energetically optimal gaits, even when metabolic rate
changes are far below our estimate of the perceptual
threshold for metabolic rate (i.e. ∼5% rather than
22.7%) [15, 84]. One potential explanation for these
differences is that our experiment measures conscious
perception of changes in metabolic rate, whereas this
prior work has allowed for potential subconscious sens-
ing contributions from sensorimotor system and auto-
nomic nervous system [85, 86]. The literature suggests
that humans rely on a combination of different affer-
ent signals, such as heart rate or muscular strain, to
generate a gestalt perception of exertion in ways that
are not yet fully understood [87, 88, 89, 90, 42]. It is
also not yet known whether the observed changes in lo-
comotor mechanics that are correlated with metabolic
rate are causally linked to those changes.

Participants varied greatly in their ability to per-
ceive changes to their metabolic rate. In this study
we investigated whether the JND was more appropri-
ately modeled as a constant value or a person-specific
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value. Using the WAIC metric—a modern Bayesian
tool for comparing the quality of models—we found
that the data were better fit by the model where
each participant had their own independent JND (see
Fig. 3.D). While the inter-participant mean JND value
was greater than the metabolic benefits provided by
modern exoskeletons, our participant pool included
three participants who had JNDs below 9.6% and thus
would likely perceive benefits from these technologies
[8] (see Fig. 3.C). Future work is needed to study
both the physiological mechanisms that underlie this
keener perception of energetics, as well as discovering
methods to identify those users who may have better
perception.

Our results confirm that the Weber Fraction (WF)—
the ratio of the JND (in absolute units of W/kg) to its
corresponding reference—is constant with respect to
reference magnitude. To this end, we again used the
WAIC metric to compare a model with and without
a WF dependence on reference magnitude, and found
the constant WF model superior. This result indicates
that metabolic rate perception in the inter-participant
range from ∼1.5 to 6.6 W/kg (see Fig. 3E) is not near
the perceptual extremes where the WF is known to
change drastically [50]. The magnitude of this range,
in conjunction with the flatness of the WF over this
range, also indicates that the perception of metabolic
rate penalties is similar to that of metabolic rate im-
provements.

Limitations
The posterior distributions for those participants with
low and high JNDs were differently shaped, reflecting
a limit on the maximum metabolic rate changes pos-
sible via exoskeleton assistance. The exoskeleton used
in this experiment was capable of providing a peak
torque of approximately 30 Nm (∼ 10 J per stride),
which limited the available metabolic rates that could
be experienced. The ability to induce a wide array
of metabolic rates is important for sampling the psy-
chometric function. To obtain estimates of these func-
tions that have low uncertainty, they must be sampled
across both the constant and transitory regions of the
psychometric curve [22]. The quality of the measure-
ments is reflected in the posterior distributions for the
JND estimates, with high quality measurements re-
sulting in narrow posterior distributions. For partici-
pants with smaller JNDs, the limitation on available
metabolic rates enabled the sampling of the major-
ity of the relevant areas of the psychometric curve.
This allowed us to exclude both excessively large and
small estimates for those participants. In contrast, for
participants with high JNDs, the imposed energetics
spanned a comparatively narrower region of the psy-
chometric function, which only excluded lower JNDs.

The posterior distributions for participants with high
JNDs was asymmetric, and thus contained greater un-
certainty in the upper bound of the threshold. Conse-
quently, any error would likely bias the true JND to
be greater than what was measured in this study.

The indirect nature of manipulating energetics via
an exoskeleton increased variability in each partici-
pant’s JND distribution. In conventional psychophysi-
cal studies, researchers have more deterministic control
over the applied stimulus under investigation. While
exoskeletons are known to influence energetics indi-
rectly through several controllable [43, 11, 12, 91] as-
pects of the torque profile, metabolic rate also depends
on many uncontrollable factors that appear noise-like
[79, 92, 48]. This added noise results in sub-optimal
sampling of the psychophysical curve that reduces cer-
tainty in the corresponding JND estimates [49]. This
uncertainty is reflected in the width of the posterior
distributions of each participant.

The uncertainty of our results also stems from an ex-
perimental limitation in how many trials are feasible.
Conventional best practice in the psychophysics litera-
ture would recommend ∼300 trials [52] when estimat-
ing the underlying psychophysical curve; however, in
this study we were able to obtain ∼100 trials for each
participant. The relatively low number of trials was
due to the time necessary to obtain responses. In this
protocol, participants experienced different metabolic
rates in sequence, each of which requires two minutes
to estimate the participant’s metabolic rate. To obtain
the necessary data for this experiment, participants
walked during three sessions spread across three days,
with each session lasting four hours. This is in contrast
to many studies of human perception, which can ob-
tain experimental data without the time delay of the
human cardiopulminary system (τr = 42 s [93]). Conse-
quently, the uncertainty of our estimates was increased
by approximately 60% [49] due to the lower number of
samples, which is reflected in the inter-participant dis-
tribution of the JNDs.

We found that despite the uncertainty in JND es-
timates, these estimates were relatively insensitive to
assumptions in our approach. We used a uniform prior
distribution in our analysis that encompassed avail-
able JNDs between 0% and 70%. We investigated the
sensitivity of our results to the bounds of this prior
distribution (i.e. 0% and 70%). We chose our lower
bound to reflect perfect human perception, while the
upper bound was informed by the reasonable assump-
tion that a human could consistently detect changes in
energetics just under those that result from switching
from walking to running (a ∼ 100% change [94]). When
the bounds of our uniform prior distribution were
changed to [0%, 60%] and [0%, 80%], we found that the
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average inter-participant JND estimate shifted from
22.7% to 21.9% and 23.2%, respectively. These small
shifts in the mean JND estimate indicate that our ap-
proach is robust to the exact shape of our prior dis-
tributions, and are thus well-informed by our sampled
data.

Participants responded to questions about exertion,
but we are unable to know what specifically drove
their answers. Our study relies on participants hon-
estly reporting perceived exertion and not confounding
this report with other perceptions, which could include
perceptions of assistive torque and assistance timing,
as well as higher-level perceptions of the helpfulness
of the actuation profile. Our study was designed to
mitigate these confounding factors. Participants read
a predefined script to help elucidate the concepts of
metabolic rate and exertion. The prompt was designed
using vocabulary consistent with the Borg Scale, used
to assess exertion [40, 42, 89]. Additionally, the torque
profile was designed to be intentionally complex (see
Methods). That is, the participant’s metabolic rate
was induced by the complex interaction of three con-
troller parameters, obscuring any foreseeable relation-
ship with metabolic rate (i.e. ”it feels more powerful
when it is stronger, which must lower my exertion”).
However, if participant’s JNDs were affected by ad-
ditional informative sources, this would also bias the
true JND of metabolic perception to be greater than
what was estimated.

Conclusion
Motivated by the need to develop augmentative ex-
oskeletons that can realize their potential to impact
society, we quantified the human ability to perceive
the metabolic impact of these technologies. Partici-
pants were able to perceive a 22.7% (± 17.0%) change
in their metabolic rate with 75% accuracy. Thus, the
average user cannot consciously perceive the metabolic
benefits from any modern exoskeletons, which may
hinder translation and adoption of these technologies.
Our results provide a new benchmark for augmen-
tative exoskeletons that will enable perceivable value
to their users. The relatively insensitive perception of
metabolic rate also suggests that alternative metrics
for exoskeleton success, such as reduced muscle fatigue,
loading, or user preference, may be more significant to
user experience and exoskeleton success.
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