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Abstract— Recent experiments have shown that human joints
can maintain a constant damping ratio across a wide range of
external loads. This behavior can be explained by the use of
a “complex stiffness” frequency-domain model approximating
the impedance of the human joint. However, for a robot to
replicate this naturally beneficial human behavior would require
a time-domain model of this nonlinear joint impedance. This
paper demonstrates that there exists a nonlinear time-domain
model (originally from the structural mechanics community) that
has a frequency-domain ‘‘describing function” that matches the
complex stiffness model observed in humans. We provide an
extension of this nonlinear time-domain model that removes the
need to implement hard-switching control input. In addition,
we demonstrate that this proportional-and-hysteretic-damping
controller has inertia-invariant overshoot and therefore offers
an advantage over the more common proportional-derivative
control approach. Implementing the proposed proportional-
and-hysteretic-damping control in a single-joint test-robot, we
demonstrate for the first time that the desired frequency domain
behavior can be reproduced in practice.

I. INTRODUCTION

While hysteretic damping was first studied by the structural
and civil engineering communities, it has emerged as a model
for biological joint dynamics. Structurally, hysteretic friction
interfaces have been used to remove energy from vibrations
in structures, with analysis performed in the frequency-domain
[1], [2]. Biologically, [3] has identified the hysteretic spring
model in the human elbow joint. These results were recently
strengthened by [4] as they allowed for better human-adapted
controller design for exoskeletons. Aside from humans, hys-
teretic spring behavior has also been identified in the joints
of cockroaches [5]. Beyond making robots more human-like,
an implementation of hysteretic damping for robot impedance
control offers a frequency-independent damping ratio, which
means that it could make robots more robust to overshoot due
to inertia variation.

However, implementing this frequency-domain behavior in
the time-domain is non-trivial, especially for researchers seek-
ing a linear time-domain realization. One approach is to use
a Hilbert transformation to directly convert the frequency-
domain representation into a non-causal (but linear) time-
domain model [6], [7]. However, since non-causal systems
cannot be realized, other approaches have aimed to realize
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the hysteretic damping through 1) causal relaxation [8]—
sacrificing the magnitude-plot behavior, 2) the addition of an
all-pass filter in the frequency domain [9]—sacrificing the
phase-plot behavior, and 3) a triangular-phase-plot approxi-
mation of the hysteresis loop [10]—sacrificing the linearity of
the realization. According to [6], Ref. [10] “failed to realize
that this is a nonlinear model,” but given that robots are
already nonlinear this is hardly a disqualifying drawback.
As emphasized by Ref. [11], Ref. [10]’s model has “hardly
received the attention it merits.”

As a nonlinear approach to achieving a robustness property,
an obvious comparison is adaptive control [12]. But while
adaptive control aims at identifying model uncertainties and
compensating for disturbances, the strength of a hysteretic
damping-based controller lies in the controller’s ability to
provide strong robustness to inertia variation with no identifi-
cation requirements. While inertia robustness can be achieved
through sliding mode control [13], it is only in the sense of
high-gain disturbance rejection of unknown loads. Such an
approach suffers from impractical chattering.

In this paper, we investigate how to transfer human-
like mass-invariant damping behavior to robots using a
smoothed nonlinear realization based on [10], which we call
proportional-and-hysteretic-damping (PHD) control. We show
that the describing function based on position-as-input [14] for
this controller exactly reproduces the desired complex-stiffness
frequency response, is amplitude-invariant, and is frequency-
invariant. Further novel analysis on behavior matching be-
tween PHD and PD controller designs is used to compare
the two controllers in terms of their step responses and how
these step responses change with inertia. We show that PHD
controller has the property of being perfectly insensitive to in-
ertia, in absolute domination of PD control’s inertia-dependent
overshoot. Since the model is nonlinear, we also investigate the
describing function based on torque-as-input to obtain a rough
estimate of how consistently the desirable frequency-domain
behavior will be preserved under more general conditions. And
we demonstrate that the controller can be realized in hardware,
with a frequency response function that closely matches both
the simulations and the complex stiffness model.

II. MATHEMATICAL PRELIMINARIES

In this section, we introduce complex stiffness and [10]’s
nonlinear time-domain model—which is the basis for our PHD
controller.



A. Complex Stiffness

A second-order linear mass-spring-damper can be described
as a frequency domain transfer function,

q(s) 1 0

w(s)  m-s>fb-s+k

with a linear damping coefficient b, a stiffness k, an inertia
parameter 7, a displacement angle g, and an input torque
7. This system has a natural frequency wg = +k/m and
a damping ratio { = b/(2vkm). By replacing the linear
damping term bs with an imaginary component of the stiffness
term hj, the complex stiffness model [4] is expressecﬂ as

T(s) m-S2+h-j+k

which results in a mass-invariant damping behavior at the
resonant peaks and a hysteretic damping ratio { = h/(2k).
However, this complex stiffness model is non-causal and has
no exact time-domain representation.

B. A Nonlinear, Causal Approximation

We want to have a causal time-domain implementation of
complex stiffness which allows for energy dissipation that
does not scale with frequency as achieved by hysteresis,
but hysteresis as typically implemented [15], [16] is also a
highly amplitude-dependent, Coulomb-friction-like behavior
that adds less and less phase lag as the input gets larger.
Since complex stiffness has a scale-invariant behavior, our
nonlinear time-domain system should have the same phase
lag for different magnitudes of the input.

This set of requirements led us both to apply a displacement-
based scale factor to the Coulomb-friction hysteresis and to
revisit [10]’s one-page paper that did the same in order to
realize complex stiffness. The model is

Ths = kpup - [9 + |q| - sign(g) - B]. 3)

where Tyg is the resulting hysteretic spring-like force, B
defines the difference between the stiffness slopes shown in

Fig. Pfa),
k1 = kpyp - (1 — B), the proactive stiffness and

4
ko = kpyp - (14 B), the reactive stiffness, @

while kpyp is k7 and k, mean value shown as the labeled
slope in Fig. [T[a). And since the switching is a function of the
sign of the velocity, it results in a hysteretic damping regulated
by 8 as shown in the comparison between Fig.[IT}a and Fig.[1]d.
As shown in Fig.[2] we can now identify two phases and two
transitions in the dynamics of a PHD controller: the proactive
phase during which the position moves toward the equilibrium,
the reactive phase during which the position moves away from
the equilibrium, the dissipative transition at ¢ = 0 in which
potential energy is lost by switching from the higher reactive
stiffness to the lower proactive stiffness, and the conservative
transition from the proactive to the reactive phase at g = 0.
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Fig. 1. Parameters Influence— plots of T v.s. g show the influence of
different v, J, and B values in (b), (c), and (d) compared to a reference
parameter setting in (a) over a full period. v and ¢ are defined in Sec
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Fig. 2. PHD controller force period— (a) shows the phases and transitions
describing the dynamics of the PHD controller in the force to position plane
while following a sinusoidal desired position input over one period, while (b)
shows the associated time response of Tyg to a sinusoidal position input.

III. MODEL ANALYSIS

In this section, we provide a thorough analysis of the mass-
invariant behavior of (3).

A. Percentage Overshoot

Because our controller is composed of two stiffnesses, kq
and kp, we can predict the step response overshoot (Fig. [3).
This is because this response is switching between two second-
order linear behaviors when the velocity changes sign.

We can analytically calculate the amount of overshoot
using conservation of energy. The potential energy equality
% ki oq? = % -k - 2% holds between subsequent peaks in
amplitude, g1 and q». And therefore,

la| _ Jhka

= . 5
|q1] kz ©)

Substituting (@), the percentage overshoot ¢prp of controlling
the inertia m using the proposed PHD controller can be
expressed as

1-B

|92
=100-— =100-,/ ——. 6
PpHD |q1] 1+8 ©

B. Damped Natural Frequency

Considering again the step response behavior in Fig. (3| the
response of a PHD controller is defined by the consecutive
switch between two stiffness kq and ky. The switching happens
when g or g crosses zero. We can split the full period into four



quadrants, such that each quadrant is the result of a single

linear spring behavior:
T I

T =2 —4+2.—= 7

PHD 1 T2 (7

where T7 and T, are the duration of the full periods of the

mass-spring dynamics solely dominated by kq and kj. Let us

define wq and wy as the natural frequencies of the inertia

m with virtual springs k; and k. By substituting Ty = %,
T, = 2(77;, and Tpyp = wﬁ” into (7), we can express the

PHD
damped natural frequency wphp as

2-wq-w
d 1 W2
w = —=, 8
PHD ) 5 (®)

Substituting w1 = vki1/m and wy, = Vkp/m into (@), we

obtain
Wi 2 Vkik ©)
PHD = ki -m+ Vka -m
Substituting k1 and k, from (@) we get
k 2-(1-p%)
d PHD
Wl = : . (10)
PHD \/ m 14—

C. Time-Domain Comparison between PD and PHD

The percentage overshoot, ¢pp, of a PD controller and
its damped natural frequency, w’lj)D, for a linear impedance
controller described in (T) can be expressed as

__ i
¢pp = 100-¢ V -2
T (an
d *PD 2
- 1—
“rp =\ 7, (1-2%).
If we let ¢pp = ¢Ppyp, (B) can be written as
,24%
1—e V1€
l+e VI8

where { = bpp /(2 vkpp - m). If we also let w‘IiJD = wfleD,
we can calculate the value of kpyp as

Ly L
O Ty

Based on (12) and (13), kpyp and B can be expressed in terms
of m, kpp and bpp. For any PD control parameter setting,
there exists a pair of kpyyp and B such that the time response
of the inertia m with the PHD controller matches the time
response of m with the PD controller.

kprp = kpp - (1 (13)

D. Frequency-Domain Response

When position is the input and force is the output, we
can analytically derive the describing function [14] of the
control in (3). In contrast to previous analytical solutions for
torque-forced oscillations [17], this will yield a describing
function that exactly reproduces the complex stiffness. Let
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Fig. 3. Illustration of Step Response Behavior—This figure illustrates the

contribution of each stiffness due to a step input in the time-domain.

q(t) = acos(wt), such that it represents the phasor a + 0j.
Within a single 27t/w period, the output T(t) will be

ky-a-cos(wt), for 0<t< T,

Ts(F) = ki-a-cos(wt), for 7= <t< T, (14)
ky-a-cos(wt), for X <t<3T
ki-a-cos(wt), for :2% <t< z(f

We can calculate the describing function, ‘f(w), through the
Single Period Phasor Transform of [18] normalized by the
input phasor a + 0j,

w [2r/w .
ths(w) = e T(t) - e 1@t (15)
or by re-parameterizing in terms of 6 = wt as in [14],
1 27 .
ths(w) = E/o s (0/w) - e71%de. (16)

Since is SISO and time invariant, this describing function
estimate will not depend on the phase of the input [14].
Using this second form, we can break the integral into simple
trigonometric integrals,

T

4 [kz /7 cos?(6) +j - cos(0) sin(6)do

+ kl /:: COsz( ) _|_] . COS(Q) Sln(9)d9

+k2/7cos

+ k1 /3n cos®(8) +j - cos(6) sin(f))d@}, 17)

2

ths(w) =

)+ j - cos(8)sin(0)do

which can be
integrals f cos?(0)do =

simplified by exploiting the indefinite
6/2 + sin(0) cos(6)/2 and

[ cos() sin(0)do = — cos?(6) /2,
bs(w) = 22 (Ep Ly 2L

or more simply
. 26 .
ths(w) = kpup (1 + ;ﬁ ']) :

Thus, when driven by sinusoidal inputs, the controller of
has an exceptionally simple describing function that is both
scale-, and frequency- invariant: it is precisely the frequency
domain complex stiffness model.

(19)



IV. METHODS
A. Controller Parameters

Because (B) approximates the PHD controller’s desired
behavior while assuming perfect knowledge of the sign of
velocity and displacement, we introduce additional § and v
parameters to (3), resulting in the following controller:

(kpap - B 19| +v) -4
|G| +9

THs = kpup - 9 + , (20)

where

(1) 6 softens the transition phases (Fig. [2)) and acts as a dead
zone for velocities (Fig. mc), and

(2) v provides a minimum energy dissipation when g gets
close to 0 (Fig. [T]b).

The energy dissipated by the controller corresponds to the

area contained inside Fig. [I[s force to position plots. Thus,

increasing v, decreasing J, and increasing 5 for a given kpyp

value allows for dissipating more energy. Setting § > 0 is

intended to smooth the energy dissipating stiffness switching,

and v > 0 adds extra energy dissipation for small oscillations.

B. Simulation Strategy

To prove the effectiveness of the proposed PHD controller
in (20), we conduct simulations of a 1-DOF system defined
as

1
j=_ (g + Trr + TrB), 1)

where Ty is the gravity torque, Tpr is a feed-forward term for
gravity compensation, and Trp is a feedback term for tracking
a reference state [§4,s, G4es]- Using our PHD controller,

(kpup - B+ |Aq| +v) - Ag
|AG| + 6 !

where Aq = g4, — q and A = 44,5 — 4. On the other hand,
for a PD controller, Trp is implemented as

Trg = kpup - Ag + (22)

Trg = kpp -Aq—l—b-Aq. (23)

C. Time-Domain Step Response Tests

We generate step responses using the proposed PHD and PD
controllers to compare their robustness to inertia variations.
For each pair of PHD and PD controllers, we test three inertia
values: 15, 50, and 300 kg - mz, with 50 serving as the nominal
value. To provide a practical comparison between controllers,
we match the amount of overshoot and the damped natural
frequency for a nominal inertia using (12) and (13).

Tab. || shows the parameters for four PHD controllers T.1-4
with T.1-3 performed in a simulation environment and T.4 in
hardware. T.1 is compared to a PD controller with kpp =
1000 N-m and bpp = 89.44 N-m-s. T.2 is compared
to a PD controller with kpp = 1000 N-m and bpp =
178.89 N - m - s. And T.3 is compared to a PD controller with
kpp = 1000 N - m and bpp = 268.33 N - m - s. The nominal
damping ratios for these three PD controllers are 0.2, 0.4, and
0.6. T.4 is compared to a PD controller with kpp = 30 N - m
and pr =183N -m-s.

(b) Apparatus

(a) Experimetal Setup

Fig. 4. Test Apparatus—a modified Taurus Testing System with a P-170
Orion actuator (Apptronik Inc.—co-owned by Luis Sentis).

TABLE I
CONTROLLER PARAMETERS

Index kPHD ﬁ J v

T.1 1.288 x 10° 0.57 0.003 0.001
T.2 2.727 x 10° 0.88 0.003 0.001
T.3 1.077 x 10* 0.98 0.003 0.001
T4 81.81 0.88 0.050 0.050
F1 52.79 0.76 0.314 0.100

We chose values for 6 and v such that they remain as
minimal as possible to preserve the desired property of the
controller while being high enough to mitigate chattering. Due
to the near-ideal simulation environment of T.1-3, we are able
to easily remove chattering by using very low values for ¢ and
v.

D. Frequency-Domain Response Tests

Our time domain model is motivated by the frequency
domain complex stiffness model. Here, we are interested in
comparing the complex stiffness model (2) with the frequency-
domain behavior achieved by (20).

In order to plot the ideal complex stiffness model, we need
only add an inertia term to (T9):

;;((2; = m-52+kaD . % 'j+kPHD-

One way for measuring the frequency-domain response of
the PHD controller is to perform frequency-domain system
identification using a sinusoidal input for g4.(¢) and measur-
ing the torque output T(¢) while using the PHD controller F.1
defined in Tab. [} The reason why F.1 has different parameters
than T.1 through T.3 is because we found its values feasible
in the real hardware.

Because the hardware will not be following an ideal sinu-
soidal position input for identification, we also simulate a more
hardware-realistic case where the closed-loop system’s natural
dynamics are forced by a torque disturbance. For this type of
experiment, @ becomes

(24)

L1 N
1= (tg +trr + T + 1), (25)

where T is a chirp perturbation of torque input.

To confirm our simulations we perform experiments in the
hardware testbed shown in Fig. E| [19]. § is set to match the
noise level in the velocity signal—to avoid noise-driven output
chattering. v is set to be well under the input amplitude, which
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Fig. 5. Step-response comparison between PD and PHD controllers—The middle-column corresponds to the damped natural frequencies and overshoots

being matched between PD and PHD controllers, while the left and the right columns respectively correspond to a decrease and an increase of the system’s
inertia. These plots demonstrate the robustness from the PHD controller to inertia variations by showing a near constant overshoot regardless of the load.
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Fig. 6. Time response showing inertia-invariance for our PHD

controller—Two step responses overlaid with different time-scales demon-
strate the nearly-identical step response shape even as inertia increases by a
factor of 5.36. Both responses use the same T.4 controller parameters defined
in Tab. [l

is sufficient for eliminating startup transients in finite time. To
de-noise the velocity signal ¢, we employ a second order low-
pass filter with w, = 120 rad/s.

The parameters of the PHD controller (F1) for the
frequency-domain test are shown in the last row of Tab. [I}
For each frequency-domain test, the PHD controller moves
the arm of the testbed which has a moment of inertia of 0.187
kg - m?. The input chirp signal has amplitude 4 N - m and
sweeps frequencies within [4,40] rad/s.

V. RESULTS
A. Comparison Between PD and PHD

The first set of results are shown in Fig. 5] The middle
column shows the step responses with the nominal inertia,
m = 50 kg-mz. At this inertia value, the PD and PHD
controllers have been designed to produce the same damped
natural frequency and percent overshoot. Therefore, the re-
sponse from the two controllers is almost identical. Moving
left in the plot grid, the response of this PD controller becomes
more damped with the m = 15 kg - m? inertia. Moving right,
the PD response overshoots more with the m = 300 kg - m?
inertia. On the other hand, the step responses using the PHD

controller change very little as a function of the moment of
inertia. Therefore, the PHD controller demonstrates a superior
robustness to inertia variations, as anticipated.

B. Frequency-Domain Results

Fig. [/| shows the Bode plots of the complex stiffness model
described in (24) and the three frequency-domain system
identification results using (20): 1) a simulated system iden-
tification plot using q4.s as the input, 2) a simulated system
identification plot using T as the input, and 3) a hardware
experiment using T as the input. As expected, the describing
function measured with position as an input and the complex
stiffness model are similar to each other. In addition the
describing functions measured with force as input are also
similar to each other. Between 8 and 20 rad /s the experiment
seems to adhere closer to the position as input than the torque
as input describing functions. This is likely due to the effect of
the low-level actuator controller [19] which limits the torque
control bandwith. Naturally, the two types of inputs converge
at high frequencies because the mass of the system dominates
and causes both position and torque to approach sinusoidal
behavior.

Between the two simulations, the magnitude and phase
plots have distinct features including a smaller low frequency
phase asymptote and a smaller magnitude before the resonant
frequency for the torque-as-input models. This low frequency
behavior is explained mainly by the torque-as-input behavior
spending a longer time in the proactive than in the reactive
phase. In addition, as we increase 6, we further reduce the
phase at lower frequencies.

C. Experimental performance of PHD

Fig. [6] shows the PHD controller’s performance in two step-
responses verified in hardware with differing load inertia. The
two step responses are overlaid, but plotted on different time
axes, to highlight their similar shapes and nearly identical
overshoot behaviors.
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Fig. 7.  Frequency domain behavior comparison—Frequency responses

for the implemented PhD controller (20) closely resemble the target complex
stiffness behavior in the frequency domain. Lines indicate 1) the target
complex stiffness model, 2) a simulated frequency response plot using g, as
the input, 3) a simulated frequency response plot using T as the input, and 4)
a hardware experiment frequency response measurement using T as the input.

VI. DISCUSSION

It is clear in Tab.I that the controller parameters for T.1-3
are considerably more aggressive than for T.4 and F.1. They
use higher kppp, lower 6 and lower v. This is because T.4
and F.I must operate on our hardware, which uses a series
elastic actuator to control torque. Unless the PHD behavior is
low stiffness, the inner-loop torque controller will introduce
noticeable phase lag.

As for the other parameters, tuning § down considerably
improves the controller’s performance and decreases the over-
shoot, but lower values make the controller more sensitive to
noise in the velocity signal. Similarly, lower v asymptotically
recreates the ideal behavior in [10], but larger v attenuates low
magnitude oscillations and allows for a smoother transition
to steady-state. We therefore tuned these parameters by hand
according to the hardware.

Because our PHD controller switches between stiffnesses, it
is slightly more sensitive to delays than a classic PD controller;
and this is a key factor in tuning the controller. While one
might be tempted to tune for low overshoot, tuning a PHD
controller means compromising between speed and energy
dissipation. It can be shown, that the energy absorbed by the
controller is a function of the ratio between kq and kp which is
ultimately defined by . So one might think that it is desired
to have a very high kp value. But if there is a delay in the
transition from low stiffness to high stiffness, the system can
gain energy at the transition. This puts a practical upper limit
on how large ky can become before the time delay will add
more energy than the system can remove.

Mass-invariant overshoot promises to be a practical ro-
bustness property that achievable by mechanical and robotic

systems. In this paper we have demonstrated that 1) PHD
control offers superior inertia robustness compared to classic
PD controllers, 2) PHD control has comparable behavior to
the complex stiffness model in the frequency domain, and 3) a
hardware realization of PHD control can successfully achieve
this complex stiffness behavior. This hardware implementa-
tion relied on implementing a time-domain approximation of
hysteretic damping with extra parameters v and J to remove
chattering and provide extra energy dissipation.

Robots that manipulate partially known objects, or more
generally, robots that need strong guarantees for overshoot
regardless of the loads they carry, stand to benefit from this
approach. The mass-invariance property avoids complicated
tuning or system identification.
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