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Objectives
• Mobility disabilities

• Limits one in eight adults [3]
• Social activity [4]
• Economic productivity [5]
• Quality of life [6]

• Need a partial assist intervention [7]

• Backdrivable powered orthoses (Fig. 1)
• Provide torque directly to human joints
• Do not rigidly control joint positions
• Offer a mechanical solution
• But control is an open problem

• State of the art control is limited
• Focuses on periodic tasks
• Struggles with task transitions
• Task-dependent, not task-invariant

• Task-invariant control is different
• Alters dynamics to help in any task

• This poster considers such a control
• Knee and ankle, stairs and walking
• “Will the torque help the human?”

Figure 1. Backdrivable powered orthosis design from the Locomotor
Control Systems Lab [1], [2] is lightweight and powerful, yet quiet and
energy-efficient. This system uses a compact, backdrivable actuator with a
single-stage 7:1 gearbox designed directly into a custom brushless DC motor.

Method
• Energy shaping [8]–[15] (Fig. 2)

• New human–robot dynamics
• Reduced mass and inertia
• Senses GRF, joint angles

• Evaluation in silico
• Recorded human movements
• Simulated control torques
• Exo—Human Torque comparison

Figure 2. Shaping body energy using backdrivable orthoses. Reducing mass or
gravity parameters in the potential energy reduces the perceived weight of the user’s
body (solid force vectors), whereas reducing mass/inertia in kinetic energy allows the
user to accelerate and decelerate with less muscular effort (dashed force vectors).

Results
• Agreement between human and exoskeleton torque (Fig. 3)

• Exoskeleton torques shown at 100% human scale
• For an assistive device, 30% scale would be practical
• 100% scale plot demonstrates torque profile similarity
• Providing similar torques helps the human

• Agreement persists across all three tasks
• Stair descent, level walking, star ascent

Figure 3. Comparison between an energy-shaping control strategy (exoskeleton torque) and normative human torques [16]
across stair descent (left), level walking (center), and stair ascent (right). Exoskeleton (orthosis) torques were generated by inputting
human data from [16] into a potential energy shaping control law based on [13]. Exoskeleton torques are shown at same scale as human
for comparison but will be scaled down for partial assistance.
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Conclusion: The quality of the matching in Fig. 3 demonstrates the viability of task-
invariant control using energy shaping, and the potential of backdrivable partial assist 
orthoses to assist activities of daily living.  
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